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1. Some experimental results 

(a) The electric charge can be negative, zero, or positive. 
Empirically it was known since ancient times that if amber is rubbed on fur, it acquires 

the property of attracting light objects such as feathers. This phenomenon was attributed to 
a new property of matter called “electric charge”. (electron is the Greek name for amber) 
More experiments show that they are two distinct type of electric charge: positive (color 
code: red), and negative (color code: black). The names “positive” and “negative” were 
given by Benjamin Franklin.  
 
((Note)) Amber: Wikipedia ηλεκτρον (Electron) 

The Greek name for amber was ηλεκτρον (Electron) and was connected to the Sun God, 
one of whose titles was Elector or the Awakener. It is discussed by Theophrastus, possibly 
the first ever mention of the material, and in the 4th century BC. The modern term electron 
was coined in 1891 by the Irish physicist George Stoney, using the Greek word for amber 
(and which was then translated as electrum) because of its electrostatic properties and 
whilst analyzing elementary charge for the first time. The ending -on, common for all 
subatomic particles, was used in analogy to the word ion. 
 
((Note)) Amber 

Amber is fossil tree resin, which is appreciated for its color and beauty. Good quality 
amber is used for the manufacture of ornamental objects and jewelry. Although not 
mineralized, it is often classified as a gemstone. A common misconception is that amber is 
made of tree sap; it is not. Sap is the fluid that circulates through a plant's vascular system, 
while resin is the semi-solid amorphous organic substance secreted in pockets and canals 
through epithelial cells of the plant. Because it used to be soft and sticky tree resin, amber 
can sometimes contain insects and even small vertebrates. Semi-fossilized resin or sub-
fossil amber is known as copal. 
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(a) Uncharged amber rod exerts no force on papers 
(b) Amber rod is rubbed against a dry cloth (a fur) 
(c) Amber rod becomes charged and attracts the papers.  

 
 
(1) The electric charge on a glass rod rubbed with silk is positive. 
(2) The electric charge on an amber (plastic) rod rubbed with fur is negative. 
 
((Note)) Rubber rubbed with cat fur: rubber becomes negative, while the fur 

becomes positive. 
 

Amber rod (-) 
Plastic rod (-) 
Rubber  (-) 
Glass rod (+) 
 



 
 

Fig. Plastic rod rubbed with fur 
 

 

  

 
(b) Further experiments on charged objects showed that: 

1. Charges of the same type (either both positive or both negative) repel each other. 
2. Charges of opposite type on the other hand attract each other. 
3. The force direction allows us to determine the sign of an unknown electric charge 

 



 
 
2. Charge is quantized 

An important experiment in which the charge of small oil droplets was determined was 
carried out by Millikan. Millikan discovered that the charge on the oil droplets was always 
a multiple of the charge of the electron (e, the fundamental charge). For example, he 
observed droplets with a charge equal to +/- e, +/- 2 e, +/- 3 e, etc., but never droplets with 
a charge equal to +/- 1.45 e, +/- 2.28 e, etc. The experiments strongly suggested that the 
electric charge, q, is said to be quantized. q is the standard symbol used for charge as a 
variable. Electric charge exists as discrete packets 
 

neq   

 
where n is an integer and e is the fundamental unit of charge.  
 

e = 1.602176487 x 10-19 C 
 

For electron  q = -e 
For proton  q = +e 
For neutron  q = 0 

 
The SI Unit of charge is the coulomb. How many electrons are there to form 1 C? The 
answer is 
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1 C = 10-6 C  (: micro) 
1 nC = 10-9 C  (n: nano) 
1 pC = 10-12 C  (p: pico) 
1 fC = 10-15 C  (f: femto) 
1 aC =10-18 C  (a: atto) 

 
((Note))  
Relation between 1 C (SI units) and 1 esu (cgs gaussian unit of charge, electrostatic unit) 
 
We consider a force between two charges with q = 1 C. The separation between two 
charges is r = 1 m.  
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In cgs units, the corresponding force between A (esu) [=1 C] is  
 

2 2

2 2

(  esu)

(100 )cgs

q A
F

r cm
    [dyne] 

 
Note that SI cgsF F  and 1N = 105 dyne. Then we have 
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So we have 
 

1C = 2.99792 x 109 esu 
 
The charge of electron is 
 

qe = 1.60217664 x 10-19 C= 4.80320425 x 10-10 esu. 
 
3. Charge is conserved 

(a) 



 
Consider a glass rod and a piece of silk cloth (both uncharged) shown in the upper 

figure. If we rub the glass rod with the silk cloth we know that positive charge appears on 
the rod (see the figure). At the same time an equal amount of negative charge appears on 
the silk cloth, so that the net rod-cloth charge is actually zero. This suggests that rubbing 
does not create charge but only transfers it from one body to the other, thus upsetting the 
electrical neutrality of each body. Charge conservation can be summarized as follows: In 
any process the charge at the beginning equals the charge at the end of the process. 
 

The total electric charge in an isolated system, that is, the algebraic sum of the positive 
and negative charge present at any time, never change. 
 
((Example-2)) 

We consider two identical sphere conductors which are actually well separated from 
one another. (Hint of HW-12)). The sphere A (with an initial charge of Q1) is touched to 
sphere B (with an initial charge of Q2) and then they are separated. 
 

 
 
(b) Some concepts 



Due to the movement of electrons, charge is transferred from one object to another. 
 
Positive ion: the atom that loses an electron is said to be a positive ion; 
Negative ion: the atom that receives an extra electron is said to be a negative ion. 
 

H (1s) 
He (1s)2 
Li (1s)2|(2s)1 
Ba (1s)2|(2s)2 
B (1s)2|(2s)2(2p)1 
C (1s)2|(2s)2(2p)2 
N (1s)2|(2s)2(2p)3 
O (1s)2|(2s)2(2p)4 
F (1s)2|(2s)2(2p)5 
Ne (1s)2|(2s)2(2p)6| 

Na (1s)2|(2s)2(2p)6|(3s)1 

Mg (1s)2|(2s)2(2p)6|(3s)2 
Al (1s)2|(2s)2(2p)6|(3s)2(3p)1 
Si (1s)2|(2s)2(2p)6|(3s)2(3p)2 
P (1s)2|(2s)2(2p)6|(3s)2(3p)3 
S (1s)2|(2s)2(2p)6|(3s)2(3p)4 
Cl (1s)2|(2s)2(2p)6|(3s)2(3p)5 
Ar (1s)2|(2s)2(2p)6|(3s)2(3p)6 
K (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)1 
Ca (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)2 

________________________________________________________________________ 
Na+ (sodium ion) 

Na (1s)2|(2s)2(2p)6|(3s)1  (11 electrons) 
Na+ (1s)2|(2s)2(2p)6|  (10 electrons) 

 
Cl- (chloride ion) 
 

Cl (1s)2|(2s)2(2p)6|(3s)2(3p)5 (17 electrons) 
Cl- (1s)2|(2s)2(2p)6|(3s)2(3p)6 (18 electrons) 

 

 
 



 
 
4. Coulomb’s law 

 

Charles-Augustin de Coulomb (June 14, 1736, Angoulême, France – August 23, 1806, 
Paris, France) 

 
He was a French physicist. He is best known for developing Coulomb's law: the definition 
of the electrostatic force of attraction and repulsion. The SI unit of charge, the coulomb, 
was named after him. 
 

The interaction between electric charges at rest is described by Coulomb’s law. Two 
stationary electric charges repel or attract one another with a force proportional to the 
product of the magnitude of the charges and inversely proportional to the square if the 
distance between them. 

We can state this compactly in vector form 
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Here q1 and q2 are numbers (scalars) giving the magnitude and sign of the respective 
charges, 12e  is the unit vector in the direction from charge 1 to charge 2, and F12 is the 

force acting on charge 2. Note that  
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The constant of proportionality (ke) is written as 
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where c is the speed of light, 
 

c = 2.99792458 x 108 m/s 
 
Note that 0  is the permittivity of free space and 0  is the permeability of free space, 
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The coulomb is an extremely large unit. The force between two charges of 1 C each a 
distance of 1 m apart is 
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((Note)) It is easy for you to memorize the value of ke. 
 

9109ek  N m2/C2 (or V m/C) 



 
The quantity 0 is called the permittivity constant. 
 

0 = 8.854187817x10-12 C2/(N m2). 
 
((Note)) 
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Nm = J,  C = A s 

W = VA  J =W s = VAs 
 
where 
 

J (Joule), A (Ampere), V (Volt), C (Coulomb), 
s (second), N (Neuton), and W (Watt). 

 
((Note)) 

The SI unit of charge is coulomb. The coulomb unit is derived from the SI unit A 
(Ampere) for the electric current i. The current i is the rate dq/dt at which the amount of 
charge (dq) moves past a point or through a region in time dt (second).  
 

dt

dq
i  . 

 
This relation implies that. 
 

1C = (1A)(1s) 
 
5. Bohr model 

We now consider the Bohr model shown in this figure. The system consists of a proton 
and an electron. These two particles are coupled with an attractive Coulomb interaction. 
 



 
The electrical force between the electron (charge q1 = -e) and proton (charge q2 = e) is 
found from Coulomb’s law, 
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where e = 1.602176487 x 10-19 C and rB is the Bohr radius given by 
 

rB = 5.2917720859 x 10-11 (m) =0.52917720859 Å. 
 
This can be compared with the gravitational force between the electron and proton 
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What is the angular frequency  for electrons rotating the circular orbit?  
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where m is the mass of electron, m = 9.1093821545 x 10-31 kg. 
 
The period is 
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((Note)) 

An important difference between the electric force and the gravitational force is that 
the gravitational force is always attractive, while the electric force can be repulsive, or 

attractive, depending on the charges of the particles.  
 
((Mathematica)) 
 



 

Clear "Global` " ;
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6. Conductors and insulators 

 
(a) Conductors 

A conductor is a material that permits the motion of electric charge through its volume. 
Examples of conductors are copper, aluminum and iron. An electric charge placed on the 

end of a conductor will spread out over the entire conductor until an equilibrium 

distribution is established.  

 

(b) Insulators 

In contrast, electric charge placed on an insulator stays in place: an insulator (like 
glass, rubber and mylar) does not permit the motion of electric charge.  
 

(c) Superconductors 

Superconductors are materials that are perfect conductors, allowing charge to move 
without any hindrance. In these chapters we discuss only conductors and insulators. 
 
7. Principle superposition 

When there are more than two charges present – the only really interesting times-we 
must supplement the Coulomb’s law with one other fact of nature: the force on any charge 
is the vector sum of the Coulomb forces from each of the other charges. This fact is called 
“the principle of superposition.” That is all there is to electrostatics. If we combine the 
Coulomb’s law and the principle of superposition, there is nothing else. 
 
Suppose we have some arrangement of charges q1, q2, q3, …, qN, fixed in space. From the 
principle of superposition, the resultant force on the charge q0 is expressed by 
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((Example)) 
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The resultant force F0 on the charge q0 is given by 
 

0 10 20 30 40   F F F F F  

 
8. Typical example 

8.1 Problem 21-8 (SP-21) 

In Fig., four particles form a square. The charges are q1 = q4 = Q and q2 = q3 = q. (a) 
What is Q/q if the net electrostatic force on particles 1 and 4 is zero? (b) Is there any value 
of q that makes the net electrostatic force on each of the four particles zero? Explain. 

 
((Solution)) 
q1 = q4 = Q 
q2 = q3 = q 
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We find that F3 + F2 has only the diagonal component from the symmetry. 
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If the net electrostatic force on particle is zero, we have 
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(b) The net electrostatic force on the charge q2 is 
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The net electrostatic force on the change q2 is equal to zero, 
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or 
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This ratio Q/q is inconsistent with that obtained previously. So it is impossible to have such 
a given situation.  
 
 
8.2 Problem 21-35 (S-21) 

In crystals of the salt cesium chloride (CsCl), cesium ions Cs+ form the eight corners 
of a cube and a chlorine ion Cl- is at the cubes (Fig.). The edge length of the cube is 0.40 
nm. The Cs+ ions are each deficient one electron (and thus each has a charge of -e), and the 
Cl- ion has one excess electron (and thus has a charge of –e). (a) What is the magnitude of 
the net electrostatic force exerted on the Cl- ion by the eight Cs+ ions at the corners of the 
cube? (b) If one of the Cs+ ions is missing, the crystal is said to have a defect; what is the 
magnitude of the net electrostatic force exerted on the Cl- ion by the seven remaining CS

+ 
ions? 
 

 
 



 
 
((WileyPlus)) 
35. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on 
the chlorine ion at the cube center. Each force is a force of attraction and is directed toward 
the cesium ion that exerts it, along the body diagonal of the cube. We can pair every cesium 
ion with another, diametrically positioned at the opposite corner of the cube. Since the two 
ions in such a pair exert forces that have the same magnitude but are oppositely directed, 
the two forces sum to zero and, since every cesium ion can be paired in this way, the total 
force on the chlorine ion is zero. 
 
(b) Rather than remove a cesium ion, we superpose charge –e at the position of one cesium 
ion. This neutralizes the ion, and as far as the electrical force on the chlorine ion is 
concerned, it is equivalent to removing the ion. The forces of the eight cesium ions at the 
cube corners sum to zero, so the only force on the chlorine ion is the force of the added 
charge. 
 

The length of a body diagonal of a cube is 3a , where a is the length of a cube edge. Thus, 

the distance from the center of the cube to a corner is d a 3 2d i . The force has magnitude 
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Since both the added charge and the chlorine ion are negative, the force is one of repulsion. 
The chlorine ion is pushed away from the site of the missing cesium ion. 
 
9. Hint of HW-21 



9.1 Problem 21-21 (Hint)*** 

In Fig., particles 1 and 2 of chare q1 = q2 = +3.20 x 10-19 C are on a y axis at distance d 
= 17.0 cm from the origin. Particle 3 of charges q3 = +6.40 x 10-19 C is moved gradually 
along the x axis from x = 0 to x = +5.0 m. At what values of x will the magnitude of the 
electrostatic force on the third particle from the other two particles be (a) minimum and (b) 
maximum? What are the (c) minimum and (d) maximum magnitudes? 
 

 
((Solution)) 
q1 = q2 = q = 3.20 x 10-19 C 
q3 = 6.40 x 10-19 C 
d = 17 cm 
0≤x≤5.0 m 
 
From the symmetry, Fy = 0. 
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where t = x/d. 
 
9.2 Problem 21-44 (Hint) 

Figure shows a long, nonconducting, massless rod of length L, pivoted at its center and 
balanced with a block of weight W at a distance x from the left end. At the left and right 
ends of the rod are attached small conducting spheres with positive charges q and 2q, 
respectively. A distance h directly beneath each of these spheres is a fixed sphere with 
positive charge Q. (a) Find the distance x when the rod is horizontal and balanced. (b) What 
value should h have so that the rod exerts no vertical force on the bearing when the rod is 
horizontal and balanced? 
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Free-body diagram 
 
We set up the equations from the conditions, 0 xF , 0 yF , and   0  around 

the origin. 
 
9.3 Problem 21-60 (HW-21, Hint) SSM 

In Fig., what are the (a) magnitude and (b) direction of the net electrostatic force on 
particle 4 due to the other three particles? All four particles are fixed in the xy plane, and 
q1 = -3.20 x 10-19 C, q2 = +3.20 x 10-19 C, q3 = + 6.40 x 10-19 C, q4 = +3.20 x 10-19 C, q1 = 
35.0°, d1 = 3.00 cm, and d2 = d3 = 2.00 cm. 
 



 
((Solution)) 
q1 = -3.20 x 10-19 C = -q 
q2 = q 
q3 = 2 q 
q4 = q 
1 = 35° 
d1 = 3.0 cm 
d2 = d3 = 2.0 cm 
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APPENDIX: 

Experimental equipment for electrostatics. You can find interesting explanation of 
equipment how it works, in Wikipedia. 
 
1. Electroscope 



https://en.wikipedia.org/wiki/Electroscope 
2. Electrophorous 

https://en.wikipedia.org/wiki/Electrophorus 
3. Faraday cage 

https://en.wikipedia.org/wiki/Faraday_cage 
4. Van der Graaf generator 

https://en.wikipedia.org/wiki/Van_de_Graaff_generator 
5. Leyden jar 

https://en.wikipedia.org/wiki/Leyden_jar 
 
 
APPENDIX-II 
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Electric field 
 

3.1 The Electric Field 

3.2 Definition of the electric field 

3.3 The direction of E
r

 

3.4 Calculating E
r

 due to a charged particle 

3.5 To find E
r

 for a group of point charge 

3.6 Electric field lines 

3.7 Motion of charge particles in a uniform electric field 

3.8 Solution of some selected problems 

3.9 The electric dipole in electric field 

3.10 Problems 
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Electric field 

 الكهربيجال الم

  
  
  

 
 

في هذا الفصل سنقوم بإدخال مفهوم المجال الكهربي الناشئ عن الشحنة أو الشحنات 

الكهربية، والمجال الكهربي هو الحيز المحيط بالشحنة الكهربية والذي تظهر فيه تأثير 

لة أن كون كذلك سندرس تأثير المجال الكهربي على شحنة في حا.  القوى الكهربية

  .السرعة الابتدائية تساوي صفراً وكذلك في حالة شحنة متحركة

  

 
 

Lenovo
Rectangle

Lenovo
Typewriter
Dr.Sattar A. Mutlag-2

Lenovo
Placed Image



Electric Field 
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3.1 The Electric Field 

The gravitational field g at a point in space was defined to be equal to the 
gravitational force F acting on a test mass mo divided by the test mass 

οm
Fg
r

r
=      (3.1) 

In the same manner, an electric field at a point in space can be defined in 
term of electric force acting on a test charge qo placed at that point. 

 

 

3.2 Definition of the electric field 

The electric field vector E
r

 at a point in space is defined as the electric force 
F
r

 acting on a positive test charge placed at that point divided by the 
magnitude of the test charge qo 

οq
FE
r

r
=      (3.2) 

The electric field has a unit of N/C 

 

E الكهربيلاحظ هنا أن المجال 
r

هو كما  qo وليس المجال الناشئ من الشحنة  خارجيهو مجال  

الفراغ بوجود أو عدم  فينقطة  أيةكهربي عند  لوقد يكون هناك مجا، 3.1موضح في الشكل 

اغ هو وسيلة لحساب المجال الفر فينقطة  أيةعند  qoولكن وضع الشحنة  qoوجود الشحنة 

 .ة المؤثرة عليهايمن خلال القوى الكهرب الكهربي

 

 

 

 

 

Figure 3.1 
 
 

qo  F  
q  
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3.3 The direction of E
r

 

If Q is +ve the electric field at point p in space is radially outward from Q as 
shown in figure 3.2(a). 

If Q is -ve the electric field at point p in space is radially inward toward Q 
as shown in figure 3.2(b). 

 

Figure 3.2 (a)    Figure 3.2 (b) 

يكون اتجاه المجال عند نقطة ما لشحنة موجبة في اتجاه الخروج من النقطة كما في الشكل 

3.2(a)بة في اتجاه الدخول من النقطة إلى الشحنة ، ويكون اتجاه المجال عند نقطة ما لشحنة سال

  .(b)3.2كما في الشكل 

 

 

3.4 Calculating E
r

 due to a charged particle 

Consider Fig. 3.2(a) above, the magnitude of force acting on qo is given by 
Coulomb’s law 
 

24
1

r
QqF ο

οπε
=  

οq
FE =  

24
1

r
QE

οπε
=      (3.3) 

 

E 
r p 

E 
r 

p 
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3.5 To find E for a group of point charge 

To find the magnitude and direction of the electric field due to several 
charged particles as shown in figure 3.3 use the following steps 

  .اله الكهربيجال الم إيجادنرقم الشحنات المراد  )1(

عند  هلكل شحنة على حد الكهربينحدد اتجاه المجال  )2(

محصلة المجال عندها ولتكن  إيجادالنقطة المراد 

 pمن النقطة  اًيكون اتجاه المجال خارج  ،pالنقطة 

 كانت الشحنة موجبة ويكون اتجاه المجال داخلاً إذا

 فيكانت الشحنة سالبة كما هو الحال  إذالى النقطة إ

  ).2(شحنة رقم ال

 يهو الجمع الاتجاه يالكل الكهربييكون المجال  )3(

 لمتجهات المجال 

 

.........4321 ++++= EEEEE p

rrrrr
  (3.4) 

اتجاه  فيكان لا يجمع متجهات المجال خط عمل واحد نحلل كل متجه إلى مركبتين  إذا )4(

   yو  x يمحور

  .yومركبات المحور  هعلى حد xنجمع مركبات المحور  )5(

 

Ex = E1x + E2x + E3x +E4x 

Ey = E1y + E2y + E3y +E4y 

 

22 هي pعند النقطة  الكهربيتكون قيمة المجال  )6(
yx EEE +=  

كون اتجاه المجال هو  ي )7(
x

y

E
E1tan−=θ 

 

+

-
+

+
q4

q3
q2

q1

P

E1

E2

E3E4

Figure 3.3 
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Example 3.1 

Find the electric field at point p in figure 3.4 due to the charges shown. 

 

 

 

 

 

 

 

Figure 3.4 

Solution 

321 EEEE p

rrrr
++=  

 

Ex = E1 - E2  =  -36×104N/C 

Ey = E3 = 28.8×104N/C 

 

Ep = √(36×104)2+(28.8×104)2 = 46.1N/C 

θ = 141o 

 

 

 

 

 

 

 
Figure 3.5 Shows the resultant electric field 

 

p 

50cm

50cm50cm 

-8µC 

+12µC +2µC 

3 

2 1 

E3 

E2 E1 

p 

46 
28.8 

36 

θ = 141o
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Example 3.2 

Find the electric field due to electric dipole along x-axis at point p, 
which is a distance r from the origin, then assume r>>a 

The electric dipole is positive charge and negative charge of equal 
magnitude placed a distance 2a apart as shown in figure 3.6 

+q

-q

r
E2 E1

2

1

2a
P

θcos1Eθcos2E

θsin1Eθsin2E

 
Figure 3.6 

 

Solution 

الناتج عن  E2والمجال  q1الناتج عن الشحنة  E1محصلة المجالين  هو pعند النقطة  يالمجال الكل

  أي أن q2الشحنة 

21 EEE p

rrr
+=  

ن ان متساويالمجالا ن إذاًان متساويتاوالشحنت ،تبعد عن الشحنتين بنفس المقدار pالنقطة  أن وحيث

  وقيمة المجال تعطى بالعلاقة

222

1
1

4
1 E

ra
qE =
+

=
οπε

 

  .ما بين الشحنة والنقطة المراد إيجاد المجال عندها هيالمسافة الفاصلة  أنلاحظ هنا 

  أعلاهالشكل  فينحلل متجه المجال إلى مركبتين كما 

Ex = E1 sinθ - E2 sinθ  
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Ey = E1 cosθ + E2 cosθ =  2E1 cosθ 

Ep = 2E1 cosθ 

θ
πεο

cos
4

1
22 ra

qEp
+

=    

from the Figure 

22
cos

ra
a
+

=θ  

22224
1

ra
a

ra
qEp

++
=

οπε
  

Ep = 2/322 )(4
2

ar
aq
+οπε

    (3.5) 

 

The direction of the electric field in the -ve y-axis. 
 

The quantity 2aq is called the electric dipole momentum (P) and has a 
direction from the -ve charge to the +ve charge 
 

(b) when r>>a 

  
34

2
r

aqE
οπε

=∴     (3.6) 

 

عند نقطة واقعة على العمود  electric dipoleالناشئ عن  الكهربييتضح مما سبق أن المجال 

وبالنسبة  electric dipole momentumعكس اتجاه  فيالمنصف بين الشحنتين يكون اتجاهه 

وهذا يعنى  ،فإن المجال يتناسب عكسيا مع مكعب المسافة electric dipoleللنقطة البعيدة عن 

 .حالة شحنة واحدة فقط فيكبر منه أالمجال مع المسافة يكون أن تناقص 
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3.6 Electric field lines 
The electric lines are a convenient way to visualize the electric filed 
patterns.  The relation between the electric field lines and the electric 
field vector is this: 

(1) The tangent to a line of force at any point gives the direction of E
r

 at 
that point. 

(2) The lines of force are drawn so that the number of lines per unit 
cross-sectional area is proportional to the magnitude of E

r
. 

 

Some examples of electric line of force 
 

 
Electric field lines due to +ve 

charge 
Electric field lines due to -ve 

charge 
 

 

E

 
Electric field lines due to +ve 

line charge 
Electric field lines due two 

surface charge 
 

Figure 3.7 shows some examples of electric line of force 
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Notice that the rule of drawing the line of force:- 

(1) The lines must begin on positive charges and terminates on negative 
charges. 

(2) The number of lines drawn is proportional to the magnitude of the 
charge. 

(3) No two electric field lines can cross. 

 
 
 
 

3.7 Motion of charge particles in a uniform electric field 

If we are given a field E
r

, what forces will act on a charge placed in it?   

We start with special case of a point charge in uniform electric field E
r

.  
The electric field will exert a force on a charged particle is given by 

F = qE 

The force will produce acceleration 

a = F/m 

where m is the mass of the particle.  Then we can write  

F = qE = ma 

The acceleration of the particle is therefore given by 

a = qE/m   (3.7) 
 

If the charge is positive, the acceleration will be in the direction of the 
electric field.  If the charge is negative, the acceleration will be in the 
direction opposite the electric field. 

 

One of the practical applications of this subject is a device called the 
(Oscilloscope) See appendix A (Cathode Ray Oscilloscope) for further 
information. 
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3.8 Solution of some selected problems 

 

  

تغطى موضوع  التيلبعض المسائل  هذا الجزء سنعرض حلولاً في

   الكهربيالمجال 
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3.8 Solution of some selected problems 

 

Example 3.3 

A positive point charge q of mass m is 
released from rest in a uniform electric 
field E

r
 directed along the x-axis as shown 

in figure 3.8, describe its motion. 

 

 

Solution 

The acceleration is given by  

a = qE/m 

Since the motion of the particle in one dimension, then we can apply the 
equations of kinematics in one dimension 

x-xo= v0t+ ½ at2 v = v0 + at v2=vo
2 + 2a(x-xo) 

Taking xo = 0 and v0 = 0 

x = ½ at2 = (qE/2m) t2 

v = at = (qE/m) t 

v2 =2ax = (2qE/m)x    (3.7) 
 

 

 

 

 

 

 

V
V=0

E

X  
 

Figure 3.8 
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Example 3.4 

In the above example suppose that a negative charged particle is 
projected horizontally into the uniform field with an initial velocity vo 
as shown in figure 3.9. 

Solution 

Since the direction of electric field E
r

 in the y direction, and the charge is 
negative, then the acceleration of charge is in the direction of -y. 

a = -qE/m 

The motion of the charge is in two dimension with constant acceleration, 
with vxo = vo & vyo = 0  

The components of velocity after time t are given by 

vx = vo =constant 

vy = at = - (qE/m) t 

The coordinate of the charge after time t are given by 

x = vot 

y = ½ at2 = - 1/2 (qE/m) t2 

Eliminating t we get 

2
2
02

x
mv
qEy =     (3.8) 

we see that y is proportional to x2.  Hence, the trajectory is parabola. 

E

(0,0)

(X,Y)

L
Y

X

V

Vo

 
 

Figure 3.9 
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Example 3.5 

Find the electric field due to electric dipole shown in figure 3.10 along 
x-axis at point p which is a distance r from the origin.  then assume 
r>>a 

 

Solution 

21 EEE p

rrr
+=  

 E1 = K 2)( ax
q
+

 

 E2 = K 2)( ax
q
−

 

 Ep = K 2)( ax
q
−

- 2)( ax
q
+

 

 Ep = Kq 222 )(
4

ax
ax
−

 

When x>>a then                  Figure 3.10 
 

34
2

x
aqE
οπε

=∴     (3.9) 

المجال عكسيا مع  يتناسبحيث  2aيرا من المسافة أكبر كث xالنهائية عندما تكون  الإجابةلاحظ 

 .مكعب المسافة

  

 
 
 

 

2a 

+q 

-q 

p 

x 

1 

2 

E2 

E1 
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Example 3.6 

What is the electric field in the lower left corner of the square as shown 
in figure 3.11?  Assume that q = 1×10-7C and a = 5cm. 
 

Solution 

First we assign number to the charges (1, 2, 3, 4) and then determine the 
direction of the electric field at the point p due to the charges. 

21 4
1

a
qE

οεπ
=  

22 24
1

a
qE

οεπ
=  

23
2

4
1

a
qE

οπε
=  

Evaluate the value of E1, E2, & E3 

E1 = 3.6×105 N/C, 

E2 = 1.8 × 105 N/C, 

E3 = 7.2 × 105 N/C 

Since the resultant electric field is the vector additions of all the fields i.e.  

321 EEEE p

rrrr
++=  

We find the vector E2 need analysis to two components 

E2x = E2 cos45 

E2y = E2 sin45 

Ex = E3 - E2cos45 = 7.2×105 - 1.8 × 105 cos45 = 6 × 105 N/C  

+q +q

-2q
P

E2

E3

E1

E2x

E2y

1
2

3

Figure 3.11 
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Ey = -E1 - E2sin45 = -3.6×105  - 1.8 × 105 sin45 = - 4.8 × 105 N/C   

22
yx EEE +=    = 7.7 × 105 N/C 

x

y

E
E1tan−=θ   = - 38.6

o

 

 

 

Example 3.7 

In figure 3.12 shown, locate the point at which the electric field is zero? 
Assume a = 50cm 

 

 

Solution 

- +
-5q 2qV S P

d
a+d

a

E2E11 2

 

Figure 3.12 

 

To locate the points at which the electric field is zero (E=0), we shall try all 
the possibilities, assume the points S, V, P and find the direction of E1 and 
E2 at each point due to the charges q1 and q2. 
 

The resultant electric field is zero only when E1 and E2 are equal in 
magnitude and opposite in direction. 

At the point S E1 in the same direction of E2 therefore E cannot be zero in 
between the two charges. 
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At the point V the direction of E1 is opposite to the direction of E2, but the 
magnitude could not be equal (can you find the reason?) 
 

At the point P the direction of E1 and E2 are in opposite to each other and 
the magnitude can be equal 
 

 

E1 = E2 

22 )(
5

4
1

)5.0(
2

4
1

d
q

d
q

οο επεπ
=

+
 

d = 30cm 

 

 

ينعدم عندها المجال تكون بين  التيحالة الشحنتين المتشابهتين فإن النقطة  فينه ألاحظ هنا 

الإشارة فإنها تكون خارج إحدى الشحنتين وعلى  فين ين مختلفتاالشحنتين، أما إذا كانت الشحنت

  .الخط الواصل بينهما وبالقرب من الشحنة الأصغر
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Example 3.8 

A charged cord ball of mass 1g is suspended 
on a light string in the presence of a uniform 
electric field as in figure 3.13.  When 
E=(3i+5j) ×105N/C, the ball is in equilibrium 
at θ=37o. Find (a) the charge on the ball and 
(b) the tension in the string. 

Solution 

مشحونة بشحنة موجبة فإن القوة الكهربية حيث أن الكرة 

  .المؤثرة على الكرة المشحونة في اتجاه المجال الكهربي

كما أن الكرة المشحونة في حالة اتزان فإن محصلة القوى 

بتطبيق قانون نيوتن الثاني .  المؤثرة على الكرة ستكون صفر

∑F=ma على مركبات x و y.  

Ex = 3×105N/C  Ey = 5j×105N/C 

∑F = T+qE+Fg = 0 

∑Fx = qEx – T sin 37 = 0   (1) 

∑Fy = qEy + T cos 37 - mg= 0   (2) 

Substitute T from equation (1) into equation (2) 

 C
E

E

mgq
x

y

8

5

3

1009.1
10

37tan
35

)8.9)(101(

37tan

−
−

×=
×⎟
⎠
⎞

⎜
⎝
⎛ +

×
=

⎟
⎠
⎞

⎜
⎝
⎛ +

=  

To find the tension we substitute for q in equation (1) 

NqExT 31044.5
37sin

−×==  

 

 

q  

E  

mg 

qE 
T 

q  

E  

Figure 3.13 
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3.9 The electric dipole in electric field 

If an electric dipole placed in an external electric field E as shown in figure 
3.14, then a torque will act to align it with the direction of the field. 
 

 

 

 

 

 

 

Figure 3.14 

 

EP
rrr

×=τ     (3.10) 

τ  = P E sinθ     (3.11) 

where P is the electric dipole momentum, θ  the angle between P and E 

 

صفر وهذا للعندما يكون الازدواج مساويا  equilibriumحالة اتزان  فيالقطب  ثنائييكون 

θ(يتحقق عندما تكون  = 0 , π (  

 Figure 3.15 (ii)        Figure 3.15 (i)

θعندما  i(3.15(الموضح في الشكل  الوضع في وضع اتزان  في dipoleيقال إن الـ  =0

θلأنه إذا أزيح بزاوية صغيرة فانه سيرجع إلى الوضع  stable equilibriumمستقر  ، بينما =0

وضع اتزان غير مستقر  في dipoleيقال إن الـ  ii(3.15( الموضح في الشكل الوضع في

unstable equilibrium يدور الـ  أنن إزاحة صغيرة له سوف تعمل على لأdipole  ويرجع

θإلى الوضع  θوليس  =0 =π.  

 

E  

P  

E 
P 

qE 

-qE 
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3.10 Problems 

 
3.1) The electric force on a point 

charge of 4.0µC at some point is 
6.9×10-4N in the positive x 
direction.  What is the value of the 
electric field at that point? 

3.2) What are the magnitude and 
direction of the electric field that 
will balance the weight of (a) an 
electron and (b) a proton? 
(Use the data in Table l.) 

3.3) A point charge of -5.2µC is 
located at the origin.  Find the 
electric field (a) on the x-axis at 
x=3 m, (b) on the y-axis at y= -4m, 
(c) at the point with coordinates 
x=2m, y=2m. 

3.4) What is the magnitude of a 
point charge chosen so that the 
electric field 50cm away has the 
magnitude 2.0N/C? 

3.5) Two point charges of 
magnitude +2.0×10-7C and 
+8.5×10-11C are 12cm apart. (a) 
What electric field does each 
produce at the site of the other?  (b) 
What force acts on each? 

3.6) An electron and a proton are 
each placed at rest in an external 
electric field of 520N/C.  Calculate 
the speed of each particle after 
48nanoseconds. 

3.7) The electrons in a particle beam 
each have a kinetic energy of 
1.6×10-17J. What are the magnitude 
and direction of the electric field 
that will stop these electrons in a 
distance of 10cm? 

3.8) A particle having a charge of -
2.0×10-9C is acted on by a 
downward electric force of 3.0×10-

6N in a uniform electric field. (a) 
What is the strength of the electric 
field? (b) What is the magnitude 
and direction of the electric force 
exerted on a proton placed in this 
field? (c) What is the gravitational 
force on the proton? (d) What is the 
ratio of the electric to the 
gravitational forces in this case? 

3.9) Find the total electric field 
along the line of the two charges 
shown in figure 3.16 at the point 
midway between them. 

- +
3m

Cµ7.4− Cµ9+

 
Figure 3.16 

3.10) What is the magnitude and 
direction of an electric field that 
will balance the weight of (a) an 
electron and (b) a proton? 
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3.11) Three charges are arranged in 
an equilateral triangle as shown in 
figure 3.17.  What is the direction 
of the force on +q? 

aa

a

+q

+Q -Q  

Figure 3.17 

3.12) In figure 3.18 locate the point at 
which the electric field is zero and 
also the point at which the electric 
potential is zero. Take q=1µC and 
a=50cm. 

50cm

-5q +2q

 

Figure 3.18 

 

3.13) What is E in magnitude and 
direction at the center of the square 
shown in figure 3.19?  Assume that 
q=1µC and a=5cm. 

P

a

a

+q -2q

+2q-q a

a

 

Figure 3.19 

3.14) Two point charges are a 
distance d apart (Figure 3.20).  Plot 
E(x), assuming x=0 at the left-hand 
charge.  Consider both positive and 
negative values of x.  Plot E as 
positive if E points to the right and 
negative if E points to the left.  
Assume q1=+1.0×10-6C, 
q2=+3.0×10-6C, and d=10cm. 

q1 q2

P

x

d

 
Figure 3.20 

3.15) Calculate E (direction and 
magnitude) at point P in Figure 
3.21. 

+2q

+q

+q

P

a

a

 

Figure 3.21 
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3.16) Charges +q and -2q are fixed a 
distance d apart as shown in figure 
3.22.  Find the electric field at 
points A, B, and C. 

+qA -2q

d dd
2

d
2

B C

 

Figure 3.22 

3.17) A uniform electric field exists 
in a region between two oppositely 
charged plates.  An electron is 

released from rest at the surface of 
the negatively charged plate and 
strikes the surface of the opposite 
plate, 2.0cm away, in a time 
1.5×10-8s. (a) What is the speed of 
the electron as it strikes the second 
plate? (b) What is the magnitude of 
the electric field E? 
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Electric Flux 
 
 

4.1 The Electric Flux due to an Electric Field 

4.2 The Electric Flux due to a point charge 

4.3 Gaussian surface 

4.4 Gauss’s Law 

4.5 Gauss’s law and Coulomb’s law 

4.6 Conductors in electrostatic equilibrium 

4.7 Applications of Gauss’s law 

4.8 Solution of some selected problems 

4.9 Problems 
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Electric Flux 

  التدفق الكهربي
  
  
  

 
 

.  درسنا سابقا كيفية حساب المجال لتوزيع معين من الشحنات باستخدام قانون كولوم

يسهل  الذي" قانون جاوس"باستخدام  الكهربيطريقة أخرى لحساب المجال وهنا سنقدم 

أو  يأو سطح طوليلتوزيع متصل من الشحنة على شكل توزيع  الكهربيحساب المجال 

يعتمد قانون جاوس أساساً على مفهوم التدفق الكهربي الناتج من المجال   .حجمي

بحساب التدفق الكهربي الناتج عن  الكهربائية، ولهذا سنقوم أولاً ةالكهربي أو الشحن

المجال الكهربي، وثانياً سنقوم بحساب التدفق الكهربي الناتج عن شحنة كهربية، ومن 

ثم سنقوم بإيجاد قانون جاوس واستخدامه في بعض التطبيقات الهامة في مجال 

  .الكهربية الساكنة
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4.1 The Electric Flux due to an Electric Field 

We have already shown how electric field can be described by lines of 
force.  A line of force is an imaginary line drawn in such a way that its 
direction at any point is the same as the direction of the field at that point.  
Field lines never intersect, since only one line can pass through a single 
point. 

The Electric flux (Φ) is a measure of the number of electric field lines 
penetrating some surface of area A. 

 

Case one: 

The electric flux for a plan surface perpendicular to a uniform electric 
field (figure 4.1) 

To calculate the electric flux we recall 
that the number of lines per unit area is 
proportional to the magnitude of the 
electric field.  Therefore, the number of 
lines penetrating the surface of area A is 
proportional to the product EA.  The 
product of the electric filed E and the 
surface area A perpendicular to the field 
is called the electric flux Φ. 

 

 

 AE
rr

.=Φ     (4.1) 

 

The electric flux Φ has a unit of N.m2/C. 

 

E

Area = A

 
 

Figure 4.1 
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Case Two 

The electric flux for a plan surface make an angle θ to a uniform electric 
field (figure 4.2) 

Note that the number of lines 
that cross-area is equal to the 
number that cross the projected 
area A`, which is perpendicular 
to the field.  From the figure we 
see that the two area are related 
by A`=Acosθ.  The flux is given 
by:

AE ′=Φ
rr

.  = E A cosθ 

AE
rr

.=Φ  

Where θ is the angle between 
the electric field E and the 
normal to the surface A

r
. 

 ذا ويكون θ = 0 أيعلى المجال  عمودياًقيمة عظمى عندما يكون السطح  ذا يكون الفيض إذاً

Aلاحظ هنا أن المتجه .  θ = 90عندما  أيللمجال  ياًقيمة صغرى عندما يكون السطح مواز
r

 

 .ةدائما على المساحة وطوله يعبر عن مقدار المساح عموديهو متجه المساحة وهو 

  

Case Three 

In general the electric field is nonuniform over the surface (figure 4.3)

The flux is calculated by integrating the normal 
component of the field over the surface in 
question. 

∫=Φ AE
rr

.   (4.2) 

 
The net flux through the surface is proportional 
to the net number of lines penetrating the 
surface 

E
DdA

 
 

Figure 4.3 

E

Area = A

A`=Acos  
 

Figure 4.2 
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إذا كانت الشحنة (عدد الخطوط الخارجة من السطح  أي net number of lines والمقصود بـ 

  ).إذا كانت الشحنة سالبة(عدد الخطوط الداخلة إلى السطح  -) موجبة

 

Example 4.1 
What is electric flux Φ for closed cylinder of radius R immersed in a 
uniform electric field as shown in figure 4.4? 

 

 
 
 

Figure 4.4 
 

 

Solution 

  نطبق قانون جاوس على الأسطح الثلاثة الموضحة في الشكل أعلاه

 ∫=Φ AdE
rr

.  ∫∫∫ ++=
)3()2()1(

... AdEAdEAdE
rrrrrr

 

    ∫∫∫ ++=
)3()2()1(

0cos90cos180cos dAEdAEdAE  

Since E is constant then 

 Φ = - EA + 0 + EA = zero 

 
 

Exercise 

Calculate the total flux for a cube immersed in uniform electric field E
r

. 

E 

2  

3 1 

dA 

dA dA  
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4.2 The Electric Flux due to a point charge 

To calculate the electric flux due to a point 
charge we consider an imaginary closed 
spherical surface with the point charge in the 
center figure 4.5, this surface is called gaussian 
surface. Then the flux is given by 
 

∫=Φ AdE
rr

.  = ∫ θcosdAE       (θ = 0) 

Φ = ∫ dA
r

q
24 οπε

 = 2
2

4
4

r
r

q π
πεο

 

Φ = 
οε
q    (4.3) 

Note that the net flux through a spherical gaussian surface is proportional to 
the charge q inside the surface. 

 
 

4.3 Gaussian surface 

Consider several closed surfaces as shown in 
figure 4.6 surrounding a charge Q as in the 
figure below.  The flux that passes through 
surfaces S1, S2 and S3 all has a value q/ εο.  
Therefore we conclude that the net flux through 
any closed surface is independent of the shape of 
the surface. 

 

 

Consider a point charge located outside a closed 
surface as shown in figure 4.7.  We can see that 
the number of electric field lines entering the 
surface equal the number leaving the surface.  
Therefore the net electric flux in this case is 
zero, because the surface surrounds no electric 
charge. 

S1
S2

S3

Q

E

 

Figure 4.6 
 
 

Q

E

S

 
Figure 4.7 

DdA

Q

E

 
 

Figure 4.5 
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Example 4.2 
In figure 4.8 two equal and opposite charges of 
2Q and -2Q what is the flux Φ for the surfaces 
S1, S2, S3 and S4.  

 

Solution 
For S1 the flux Φ = zero 

For S2 the flux Φ = zero 

For S3 the flux Φ = +2Q/ εo 

For S4 the flux Φ = -2Q/ εo 

 
 

 

4.4 Gauss’s Law 

Gauss law is a very powerful theorem, which 
relates any charge distribution to the resulting 
electric field at any point in the vicinity of the 
charge.  As we saw the electric field lines 
means that each charge q must have q/εo flux 
lines coming from it.  This is the basis for an 
important equation referred to as Gauss’s 
law.  Note the following facts:  

1. If there are charges q1, q2, q3, ......qn inside 
a closed (gaussian) surface, the total 
number of flux lines coming from these 
charges will be 

 

(q1 + q2 + q3 + ....... +qn)/εo   (4.4) 

2Q

-2Q

S1

S2

S3

S4

 
 

Figure 4.8 

DdA

Q

E

 
 

Figure 4.9 
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2. The number of flux lines coming out of a closed surface is the integral of 
AdE
rr

.  over the surface, ∫ AdE
rr

.  

We can equate both equations to get Gauss law which state that the net 
electric flux through a closed gaussian surface is equal to the net charge 
inside the surface divided by εo 

οε
inq

AdE =∫
rr

.   Gauss’s law  (4.5) 

where qin is the total charge inside the gaussian surface. 

 

Gauss’s law states that the net electric flux through any closed gaussian 
surface is equal to the net electric charge inside the surface divided by 
the permittivity. 

 

4.5 Gauss’s law and Coulomb’s law 

We can deduce Coulomb’s law from Gauss’s 
law by assuming a point charge q, to find the 
electric field at point or points a distance r 
from the charge we imagine a spherical 
gaussian surface of radius r and the charge q at 
its center as shown in figure 4.10. 
 

 
οε
inq

AdE =∫
rr

.  

 

οε
inq

dAE =∫ 0cos  Because E is 

constant for all points on the sphere, it can be factored from the inside of the 
integral sign, then 
 

  
οε
inq

dAE =∫      ⇒      
οε
inq

EA =     ⇒    
οε

π inq
rE =)4( 2  

DdA

Q

E

Lenovo
Rectangle



Electric Flux 

www.hazemsakeek.com  

  
24

1
r
qE

οπε
=∴     (4.6) 

 
Now put a second point charge qo at the point, which E is calculated.  The 
magnitude of the electric force that acts on it F = Eqo 
 

  
24

1
r

qqF o

οπε
=∴  

 
4.6 Conductors in electrostatic equilibrium 

A good electrical conductor, such as copper, contains charges (electrons) 
that are free to move within the material.  When there is no net motion of 
charges within the conductor, the conductor is in electrostatic equilibrium. 
 
 
Conductor in electrostatic equilibrium has the following properties: 
 
1. Any excess charge on an isolated conductor must reside entirely on its 

surface. (Explain why?) The answer is when an excess charge is placed 
on a conductor, it will set-up electric field inside the conductor.  These 
fields act on the charge carriers of the conductor (electrons) and cause 
them to move i.e. current flow inside the conductor.  These currents 
redistribute the excess charge on the surface in such away that the 
internal electric fields reduced to become zero and the currents stop, and 
the electrostatic conditions restore. 

 

2. The electric field is zero everywhere inside the conductor. (Explain 
why?) Same reason as above 

 
 
In figure 4.11 it shows a conducting slab 
in an external electric field E.  The 
charges induced on the surface of the slab 
produce an electric field, which opposes 
the external field, giving a resultant field 
of zero in the conductor. 
 
 

 
 

Figure 4.11 
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Steps which should be followed in solving problems 

 

1. The gaussian surface should be chosen to have the same symmetry 
as the charge distribution. 

2. The dimensions of the surface must be such that the surface 
includes the point where the electric field is to be calculated. 

3. From the symmetry of the charge distribution, determine the 
direction of the electric field and the surface area vector dA, over 
the region of the gaussian surface. 

4. Write E.dA as E dA cosθ and divide the surface into separate 
regions if necessary. 

5. The total charge enclosed by the gaussian surface is dq = ∫dq, 
which is represented in terms of the charge density ( dq = λdx for 
line of charge, dq = σdA for a surface of charge, dq = ρdv for a 
volume of charge). 
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dE 

dx 

r  

x  

θ 

→ ∞ −∞ ←  

4.7 Applications of Gauss’s law 

 أن وهذا التوزيع إما ،كما ذكرنا سابقا فإن قانون جاوس يطبق على توزيع متصل من الشحنة

 فييوجد على كل حالة مثال محلول .  حجمياً اًأو توزيع سطحياً اًأو توزيع طولياً اًيكون توزيع

  .هنا بذكر بعض النقاط الهامة سنكتفيالكتاب 

  

كما  ربي عند نقطة تبعد مسافة عن سلك مشحونحساب المجال الكه أردناعلى سبيل المثال إذا 

وغالبا نفترض أن توزيع  ،هذه الحالة الشحنة موزعة بطريقة متصلة في، هنا 4.12في الشكل 

، ولحل مثل هذه المشكلة نقسم السلك إلى عناصر λ(C/m)الشحنة منتظم ويعطى بكثافة التوزيع 

 )p(نقطة الناشئ عند  dEونحسب المجال  dxصغيرة طول كلا منها 

 

 

 

 

 

 

 

  

 
Figure 4.12 

2222 xr
dxK

xr
dqKdE

+
=

+
=

λ

 التي فياتجاه المركبة الرأسية  فيتتلاشى والمحصلة تكون  الأفقيةومن التماثل نجد أن المركبات 

  yاتجاه 

 dEy = dE cosθ   Ey = ∫ ydE  = ∫
+∞

∞−

dEθcos  
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 E  = 2 ∫
+∞

0

cos dEθ   ∫
+∞

+0
22cos

4
2

xr
dxθ

πε
λ

ο

 

 :يليكما  dxوالمتغير  xمن الشكل الهندسي يمكن التعويض عن المتغير 

 x = y tanθ ⇒  dx = y sec2θ dθ 

 E = ∫
2

0

cos
2

π

θθ
πε
λ

ο

d   

 E = 
rοπε

λ
2

 

لذلك  ،ةحالة التوزيع المتصل للشحن فينك لاحظت صعوبة الحل باستخدام قانون كولوم ألاشك 

بها درجة عالية من  والتيمثل هذه الحالات  فييسهل الحل كثيراً  الذيسندرس قانون جاوس 

 .التماثل

  
 
  

Gauss’s law can be used to calculate the electric field if the symmetry of 
the charge distribution is high.  Here we concentrate in three different 
ways of charge distribution 
 
 

 1 2 3 

Charge distribution Linear Surface Volume 

Charge density λ σ  ρ 

Unit C/m C/m2 C/m3 
 
 

  انتبه إلى حدود التكامل
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A linear charge distribution 
In figure 4.13 calculate the electric field at a distance r from a uniform 
positive line charge of infinite length whose charge per unit length is 
λ=constant. 

E

Rr

L  
 

Figure 4.13 
 

 

The electric field E is perpendicular to the line of charge and directed 
outward.  Therefore for symmetry we select a cylindrical gaussian surface 
of radius r and length L. 
 

The electric field is constant in magnitude and perpendicular to the surface. 
 

The flux through the end of the gaussian cylinder is zero since E is parallel 
to the surface. 
 

The total charge inside the gaussian surface is λL. 
Applying Gauss law we get 

οε
inq

AdE =∫
rr

.  

οε
λLdAE =∫  

οε
λπ LrLE =2  

r
E

οπε
λ

2
=∴      (4.7) 

 

قانون  قنلاحظ هنا أنه باستخدام قانون جاوس سنحصل على نفس النتيجة التي توصلنا لها بتطبي

 .كولوم وبطريقة أسهل
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A surface charge distribution 
In figure 4.4 calculate the electric field due to non-conducting, infinite plane 
with uniform charge per unit area σ. 

E

 
Figure 4.14 

 
The electric field E is constant in magnitude and perpendicular to the plane 
charge and directed outward for both surfaces of the plane.  Therefore for 
symmetry we select a cylindrical gaussian surface with its axis is 
perpendicular to the plane, each end of the gaussian surface has area A and 
are equidistance from the plane. 
 
The flux through the end of the gaussian cylinder is EA since E is 
perpendicular to the surface. 
 
The total electric flux from both ends of the gaussian surface will be 2EA. 
Applying Gauss law we get 
 

οε
inq

AdE =∫
rr

.  

οε
σAEA =2  

οε
σ
2

=∴ E     (4.8)
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An insulated conductor.
فإن قيمة المجال داخل مادة  وبالتالي ،ذكرنا سابقا أن الشحنة توزع على سطح الموصل فقط

 وقيمة المجال خارج الموصل تساوى  اً،صل تساوى صفرالمو

  

οε
σ

=E     (4.9) 

 
حالة السطح اللانهائي  فيقيمة المجال  ضعفحالة الموصل يساوى  فين المجال ألاحظ هنا 

بينما كل  ،حالة السطح غير الموصل فيوذلك لأن خطوط المجال تخرج من السطحين  ،المشحون

  .حالة الموصل في الخارجيتخرج من السطح خطوط المجال 
 
 

Conductor

E 
 

Figure 4.15 
 
  

نلاحظ أن الوجه الأمامي لسطح جاوس له فيض حيث أن الشحنة  4.15في الشكل الموضح أعلاه 

تستقر على السطح الخارجي، بينما يكون الفيض مساوياً للصفر للسطح الخلفي الذي يخترق 

  .وذلك لأن الشحنة داخل الموصل تساوي صفراًالموصل 
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A volume charge distribution 
In figure 4.16 shows an insulating sphere of radius a has a uniform charge 
density ρ and a total charge Q. 

1) Find the electric field at point outside the sphere (r>a) 

2) Find the electric field at point inside the sphere (r<a) 

 
 
 

 
For r>a 

Rr

Aa

E
 

 
Figure 4.16 

 
 

We select a spherical gaussian surface of radius r, concentric with the 
charge sphere where r>a.  The electric field E is perpendicular to the 
gaussian surface as shown in figure 4.16.  Applying Gauss law we get 
 

οε
inq

AdE =∫
rr

.  

οε
π QrEAE ==∫ )4( 2  

24 r
QE

οπε
=∴      (for r>a)   (4.10) 

 
Note that the result is identical to appoint charge. 
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For r<a 

Rr

Aa

E 
 

Figure 4.17 
 

We select a spherical gaussian surface of radius r, concentric with the 
charge sphere where r<a.  The electric field E is perpendicular to the 
gaussian surface as shown in figure 4.17.  Applying Gauss law we get 

οε
inq

AdE =∫
rr

.  

 
It is important at this point to see that the charge inside the gaussian surface 
of volume V` is less than the total charge Q.  To calculate the charge qin, we 
use qin=ρV`,  where V`=4/3πr3.  Therefore, 
 

qin =ρV`=ρ(4/3πr3)    (4.11) 
 

οε
π inq

rEAE ==∫ )4( 2  

r
r
r

r
q

E in

οοο ε
ρ

πε
πρ

πε 344 2

3
3
4

2 ===   (4.12) 

since 3
3
4 a

Q
π

ρ =  

34 a
QrE

οπε
=∴      (for r<a)   (4.13) 

 
Note that the electric field when 
r<a is proportional to r, and when 
r>a the electric field is proportional 
to 1/r2. 

r 10-10m

E 
10

13
N

/C

0.4

0.8

1.2

1.0 2.0 3.0
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4.8 Solution of some selected problems 

 

  

استخدام قانون جاوس تغطى  التيلبعض المسائل  هذا الجزء سنعرض حلولاً في

  لإيجاد المجال الكهربي 
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4.8 Solution of some selected problems 

Example 4.3 
If the net flux through a gaussian surface is zero, which of the following 
statements are true? 
1) There are no charges inside the surface. 
2) The net charge inside the surface is zero. 
3) The electric field is zero everywhere on the surface.  
4) The number of electric field lines entering the surface equals the 

number leaving the surface. 
 

Solution 
Statements (b) and (d) are true.  Statement (a) is not necessarily true since 
Gauss' Law says that the net flux through the closed surface equals the net 
charge inside the surface divided by εo. For example, you could have an 
electric dipole inside the surface.  Although the net flux may be zero, we 
cannot conclude that the electric field is zero in that region. 
 
 
 

Example 4.4 
A spherical gaussian surface surrounds a point charge q. Describe what 
happens to the: flux through the surface if  
1) The charge is tripled, 
2) The volume of the sphere is doubled, 
3) The shape of the surface is changed to that of a cube,  
4) The charge is moved to another position inside the surface; 
 

Solution 
1) If the charge is tripled, the flux through the surface is tripled, since the 

net flux is proportional to the charge inside the surface 
2) The flux remains unchanged when the volume changes, since it still 

surrounds the same amount of charge. 
3) The flux does not change when the shape of the closed surface changes. 
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4) The flux through the closed surface remains unchanged as the charge 
inside the surface is moved to another position. All of these conclusions 
are arrived at through an understanding of Gauss' Law.

 
 
 
 

Example 4.5 
A solid conducting sphere of 
radius a has a net charge +2Q.  A 
conducting spherical shell of 
inner radius b and outer radius c 
is concentric with the solid sphere 
and has a net charge –Q as shown 
in figure 4.18.  Using Gauss’s law 
find the electric field in the 
regions labeled 1, 2, 3, 4 and find 
the charge distribution on the 
spherical shell.  
 
 

Solution 
عند مناطق  الكهربيين المجال يلذلك لتع ،ينلاحظ أن توزيع الشحنة على الكرتين لها تماثل كرو

 .rالشكل نصف قطره  يسطح جاوس كرو أن مختلفة فإننا سنفرض

  
Region (1) r < a 
To find the E inside the solid sphere of radius a we construct a gaussian 
surface of radius r < a 
E = 0 since no charge inside the gaussian surface. 
 
 
Region (2) a < r < b 
we construct a spherical gaussian surface of radius r 

 
οε
inq

AdE =∫
rr

.  

Aa

Ab
Ac

A+ Q2

A--Q

 
 

Figure 4.18 
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أن و 2Qشحنة الكرة الموصلة الداخلية  هيلاحظ هنا أن الشحنة المحصورة داخل سطح جاوس 

و المجال ثابت  θ = 0 أيمن سطح جاوس  هنصاف الأقطار وخارجاتجاه أ فيخطوط المجال 

  . المقدار على السطح

     E 4πr2 = 
οε
Q2   

 
2

2
4

1
r
QE

οπε
=∴  a < r < b 

 

Region (4) r > c 
we construct a spherical gaussian surface of radius r > c, the total net charge 
inside the gaussian surface is q = 2Q + (-Q) = +Q Therefore Gauss’s law 
gives 

 
οε
inq

AdE =∫
rr

.  

 E 4πr2 = 
οε

Q  

 
24

1
r
QE

οπε
=∴   r > c 

 
 

Region (3) b > r < c 

ولأن  ،أيضا لأن القشرة الكروية موصلة اًهذه المنطقة يجب أن يكون صفر في الكهربيالمجال 

على  Q-نستنتج أن الشحنة  إذا. اًيجب أن تساوى صفر b<r<cالشحنة الكلية داخل سطح جاوس 

للقشرة الكروية بحيث  الخارجيوالسطح  الداخلينتيجة توزيع شحنة على السطح  هيالقشرة الكروية 

المقدار  فيللقشرة مساوية  الداخليتتكون بالحث شحنة على السطح  وبالتالي Q-تكون المحصلة 

معطيات السؤال  فيوحيث أنه كما  2Q- أي الإشارة فيللشحنة على الكرة الداخلية ومخالفة لها 

للقشرة الكروية يجب أن  الخارجينستنتج أن على السطح  Q- هيالشحنة الكلية على القشرة الكروية 

 Q+تكون 
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Example 4.6 

A long straight wire is surrounded by a hollow cylinder whose axis 
coincides with that wire as shown in figure 4.19.  The solid wire has a 
charge per unit length of +λ, and the hollow cylinder has a net charge 
per unit length of +2λ.  Use Gauss law to find (a) the charge per unit 
length on the inner and outer surfaces of the hollow cylinder and (b) the 
electric field outside the hollow cylinder, a distance r from the axis. 

 

Solution 

(a) Use a cylindrical Gaussian surface S1 within 
the conducting cylinder where E=0 

Thus  
οε
inq

AdE =∫
rr

. =  0 

and the charge per unit length on the inner surface 
must be equal to  
             λinner = -λ  
Also   λinner + λouter = 2λ 
thus  λouter = 3λ 
 
(b) For a gaussian surface S2 outside the 
conducting cylinder 
 

  
οε
inq

AdE =∫
rr

.  

 E (2πrL) = 
οε
1  (λ - λ + 3λ)L 

 
r

E
οπε

λ
2

3
=∴  

 

 + λ

+2 λ

 

Figure 4.19 

Lenovo
Rectangle



Electric Flux 

www.hazemsakeek.com  

Example 4.7 
Consder a long cylindrical charge distribution of radius R with a 
uniform charge density ρ.  Find the electric field at distance r from the 
axis where r<R. 

 

Solution 
If we choose a cilindrical gaussian surface of length L and radius r, Its 
volume is πr2L, and it enclses a charge ρπr2L. By applying Gauss’s law we 
get, 

οε
inq

AdE =∫
rr

.  becomes 
οε

ρπ LrdAE
2

=∫  

rLdA π2=∫Q  therefore 
οε

ρππ LrrLE
2

)2( =  

Thus 

οε
ρ

2
rE =  radially outward from the cylinder axis 

Notice that the electric field will increase as ρ increases, and also the 
electric field is proportional to r for r<R.  For thr region outside the cylinder 
(r>R), the electric field will decrese as r increases. 
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Example 4.8 
Two large non-conducting sheets of +ve charge face each other as 
shown in figure 4.20.  What is E at points (i) to the left of the sheets (ii) 
between them and (iii) to the right of 
the sheets? 

Solution 
We know previously that for each sheet, 
the magnitude of the field at any point 
is 

  
οε

σ
2

=E  

(a) At point to the left of the two 
parallel sheets 

  E = -E1 + (-E2) = -2E 

  
οε

σ
−=∴ E  

(b) At point between the two sheets 

  E = E1 + (-E2) = zero 

(c) At point to the right of the two parallel sheets 

  E = E1 + E2 = 2E 

  
οε

σ
=∴ E  

 
 

 

 
 

Figure 4.20 
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4.9 Problems 

 
4.1) An electric field of intensity 

3.5×103N/C is applied the x-axis.  
Calculate the electric flux through a 
rectangular plane 0.35m wide and 
0.70m long if (a) the plane is 
parallel to the yz plane, (b) the 
plane is parallel to the xy plane, 
and (c) the plane contains the y axis 
and its normal makes an angle of 
40o with the x axis. 

4.2) A point charge of +5µC is 
located at the center of a sphere 
with a radius of 12cm.  What is the 
electric flux through the surface of 
this sphere? 

4.3) (a) Two charges of 8µC and -
5µC are inside a cube of sides 
0.45m.  What is the total electric 
flux through the cube? (b) Repeat 
(a) if the same two charges are 
inside a spherical shell of radius 0. 
45 m. 

4.4) The electric field everywhere 
on the surface of a hollow sphere of 
radius 0.75m is measured to be 
equal to 8.90×102N/C and points 
radially toward the center of the 
sphere. (a) What is the net charge 
within the surface? (b) What can 
you conclude about charge inside 
the nature and distribution of the 
charge inside the sphere? 

4.5) Four closed surfaces, S1, 
through S4, together with the 
charges -2Q, +Q, and -Q are 
sketched in figure 4.21.  Find the 
electric flux through each surface. 

-2Q

S1

S4

S3

S2

-Q

+Q

 

Figure 4.21 

 

4.6) A conducting spherical shell of 
radius 15cm carries a net charge of 
-6.4µC uniformly distributed on its 
surface.  Find the electric field at 
points (a) just outside the shell and 
(b) inside the shell. 

4.7) A long, straight metal rod has a 
radius of 5cm and a charge per unit 
length of 30nC/m.  Find the electric 
field at the following distances 
from the axis of the rod: (a) 3cm, 
(b) 10cm, (c) 100cm. 

Lenovo
Rectangle



Lectures in General Physics  

Dr. Hazem Falah Sakeek  

4.8) A square plate of copper of 
sides 50cm is placed in an extended 
electric field of 8×104N/C directed 
perpendicular to the plate.  Find (a) 
the charge density of each face of 
the plate and (b) the total charge on 
each face. 

4.9) A solid copper sphere 15cm in 
radius has a total charge of 40nC.  
Find the electric field at the 
following distances measured from 
the center of the sphere: (a) 12cm, 
(b) 17cm, (c) 75cm. (d) How would 
your answers change if the sphere 
were hollow? 

4.10) A solid conducting sphere of 
radius 2cm has a positive charge of 
+8µC.  A conducting spherical 
shell d inner radius 4cm and outer 
radius 5cm is concentric with the 
solid sphere and has a net charge of 
-4µC. (a) Find the electric field at 
the following distances from the 
center of this charge configuration: 
(a) r=1cm, (b) r=3cm, (c) r=4.5cm, 
and (d) r=7cm. 

4.11) A non-conducting sphere of 
radius a is placed at the center of a 
spherical conducting shell of inner 
radius b and outer radius c, A 
charge +Q is distributed uniformly 
through the inner sphere (charge 
density ρC/m3) as shown in figure 
4.22.  The outer shell carries -Q. 
Find E(r) (i) within the sphere 
(r<a) (ii) between the sphere and 
the shell (a<r<b) (iii) inside the 
shell (b<r<c) and (iv) out side the 

shell and (v) What is the charge 
appear on the inner and outer 
surfaces of the shell?  

Aa

Ab
Ac

A+Q

A--Q

 

Figure 4.22 

 

4.12) A solid sphere of radius 40cm 
has a total positive charge of 26µC 
uniformly distributed throughout its 
volume.  Calculate the electric field 
intensity at the following distances 
from the center of the sphere: (a) 0 
cm, (b) 10cm, (c) 40cm, (d) 60 cm. 

4.13) An insulating sphere is 8cm in 
diameter, and carries a +5.7µC 
charge uniformly distributed 
throughout its interior volume.  
Calculate the charge enclosed by a 
concentric spherical surface with 
the following radii: (a) r=2cm and 
(b) r=6cm. 

4.14) A long conducting cylinder 
(length l) carry a total charge +q is 
surrounded by a conducting 
cylindrical shell of total charge -2q 
as shown in figure 4.23.  Use 
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Capacitors and Capacitance 
  والسعة الكهربية المكثف الكهربي

  
  
  

 
 

تطبيقاً على المفاهيم الأساسية للكهربية الساآنة، حيث سنرآز على هذا الفصل يعتبر 
الأجهزة الكهربية التي لا تخلو وهي من  Capacitorsالتعرف على خصائص المكثفات 

والمكثف عبارة عن .  ويعد المكثف بمثابة مخزن للطاقة الكهربية.  يةمنها أية دائرة آهرب
  .موصلين يفصل بينهما مادة عازلة
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6.1 Capacitor 

A capacitor consists of two conductors separated by 
an insulator Figure 6.1.  The capacitance of the 
capacitor depends on the geometry of the 
conductors and on the material separating the 
charged conductors, called dielectric that is an 
insulating material.  The two conductors carry equal 
and opposite charge +q and -q. 

 

 

6.2 Definition of capacitance 

The capacitance C of a capacitor is defined 
as the ratio of the magnitude of the charge 
on either conductor to the magnitude of the 
potential difference between them as shown 
in Figure 6.2. 

V
qC =    (6.1) 

The capacitance C has a unit of C/v, which 
is called farad F 

F = C/v 

The farad is very big unit and hence we use submultiples of farad 

1µF = 10-6F 

1nF = 10-9F 

1pF = 10-12F 

 

The capacitor in the circuit is represented by the symbol shown in Figure 
6.3. 
 

 

1+q 1-q

Conductor

Insulator

 
 

Figure 6.1 

Capacitor
Electric field

Battery  
 

Figure 6.2 

Figure 6.3 
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6.3 Calculation of capacitance 

The most common type of capacitors are:- 

• Parallel-plate capacitor 

• Cylindrical capacitor 

• Spherical capacitor 

We are going to calculate the capacitance of parallel plate capacitor using 
the information we learned in the previous chapters and make use of the 
equation (6.1). 

 

6.3.1 Parallel plate capacitor 

Two parallel plates of equal area A are separated by distance d as shown in 
figure 6.4 bellow.  One plate charged with +q, the other -q. 
 

1+q

1-q

dd
Gaussian
surface

 

Figure 6.4 

The capacitance is given by 
V
qC =  

First we need to evaluate the electric field E to workout the potential V. 

Using gauss law to find E, the charge per unit area on either plate is  

σ = q/A.   (6.2) 

A
qE
οο εε

σ
==∴   (6.3), (4.9) 

The potential difference between the plates is equal to Ed, therefore 

A
qdEdV
οε

==   (6.4) 

The capacitance is given by 
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Aqd
q

V
qC

οε
==   (6.5) 

d
A

C οε
=∴    (6.6) 

 

Notice that the capacitance of the parallel plates capacitor is depends on the 
geometrical dimensions of the capacitor. 

The capacitance is proportional to the area of the plates and inversely 
proportional to distance between the plates. 

تمكننا من حساب سعة المكثف من خلال الأبعاد الهندسية له، حيث أن سعة  )6.6(المعادلة 

 .المكثف تتناسب طردياً مع المساحة المشتركة بين اللوحين وعكسياً مع المسافة بين اللوحين

 

 

Example 6.1 
An air-filled capacitor consists of two plates, each with an area of 
7.6cm2, separated by a distance of 1.8mm.  If a 20V potential difference 
is applied to these plates, calculate, 

(a) the electric field between the plates, 
(b) the surface charge density, 
(c) the capacitance, and 
(d) the charge on each plate. 

 

Solution 

(a) mV
d
VE 4

3 1011.1
108.1

20
×=

×
== −  

(b) 28412 1083.9)1011.1)(1085.8( mCE −− ×=××== οεσ  

(c) F
d
A

C 12
3

412

1074.3
108.1

)106.7)(1085.8( −
−

−−

×=
×

××
== οε

 

(d) CCVq 1112 1048.7)20)(1074.3( −− ×=×==  
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6.3.2 Cylindrical capacitor 

In the same way we can calculate the capacitance of cylindrical capacitor, 
the result is as follow 

( )ab
l

C
ln
2 οπε

=    (6.7) 

Where l is the length of the cylinder, a is the radius of the inside cylinder, 
and b the radius of the outer shell cylinder. 

 

 

6.3.3 Spherical Capacitor 

In the same way we can calculate the capacitance of spherical capacitor,  the 
result is as follow 

ab
ab

C
−

= οπε4
   (6.8) 

Where a is the radius of the inside sphere, and b is the radius of the outer 
shell sphere.  

 

Example 6.2 
An air-filled spherical capacitor is constructed with inner and outer 
shell radii of 7 and 14cm, respectively. Calculate, 

(a) The capacitance of the device, 
(b) What potential difference between the spheres will result in a 

charge of 4µC on each conductor? 
 

Solution 

(a) F
ab
ab

C 11
12

1056.1
)07.014.0(

)14.0)(07.0)(1085.84(4 −
−

×=
−

××
=

−
=

ππεο  

(b) V
C
qV 5

11

6

1056.2
1056.1

104
×=

×
×

== −

−
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6.4 Combination of capacitors 

Some times the electric circuit consist of more than two capacitors, which 
are, connected either in parallel or in series the equivalent capacitance is 
evaluated as follow 
 

 

6.4.1 Capacitors in parallel: 

In parallel connection the capacitors are connected as shown in figure 6.5 
below where the above plates are connected together with the positive 
terminal of the battery, and the bottom plates are connected to the negative 
terminal of the battery. 
 

V
C2 C3C1

Cq1 Cq2 Cq3

 

Figure 6.5 

 

In this case the potential different across each capacitor is equal to the 
voltage of the battery V 

i.e. V=V1=V2=V3 

The charge on each capacitor is 

333222111 ;; VCqVCqVCq ===  

The total charge is 

VCCCq
qqqq

)( 321

321

++=
++=

 

V
qC =Q  

The Equivalent capacitance is 

321 CCCC ++=     (6.9) 

في حالة توصيل المكثفـات  

على التوازي يكـون فـرق   

الجهد علـى كـل مكثـف    

مساوياً لفرق جهد البطارية، 

أما الشحنة فتتوزع بنسـبة  

  .سعة كل مكثف
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6.4.2 Capacitors in series: 

In series connection the capacitors are connected as shown in figure 6.6 
below where the above plates are connected together with the positive 

 

V

C2 C3C1

V1 V2 V3

1-q1-q 1-q 1+q1+q1+q

 

Figure 6.6 
 

In this case the magnitude of the charge must be the same on each plate with 
opposite sign 

i.e. q=q1=q2=q3 
 

The potential across each capacitor is 

332211 /;/;/ CqVCqVCqV ===  

The total potential V is equal the sum of the potential across each capacitor 

321 VVVV ++=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

321

111
CCC

qV  

321

111

1

CCCV
qC

++
==  

The Equivalent capacitance is 
 

321

1111
CCCC

++=    (6.10) 

في حالة توصـيل المكثفـات   

على التوالي فـإن الشـحنة   

تتوزع على كل مكثف بشـكل  

متســاو وتســاوي الشــحنة 

أما مجمـوع فـروق   . الكلية

الجهد على كل مكثف يساوي 

  .فرق جهد البطارية
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Example 6.3 
Find the equivalent capacitance between points a and b for the group of 
capacitors shown in figure 6.7 . C1=1µF, C2=2µF, C3=3µF, C4=4µF, 
C5=5µF, and C6=6µF. 

 

C5

C2

C6 C3

C4

C1

aa
Ab

Ag

Ad Ae

Al
Ak

Am Ah

       (i) 

Figure 6.7 

Solution 
First the capacitor C3 and C6 are connected in series so that the equivalent 
capacitance Cde is 

FC
C de

de

µ2;
3
1

6
11

=⇒+=  

Second C1 and C5 are connected in parallel 

Ckl=1+5=6µF 

The circuit become as shown below 
 

aa
Ab

Ag

Ad Ae

Al
Ak

Am Ah
2

2

4

6

       (ii) 

Continue with the same way to reduce the circuit for the capacitor C2 and 
Cde to get Cgh=4µF 
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4.5 Energy stored in a charged capacitor (in electric field) 

If the capacitor is connected to a power supply such as battery, charge will 
be transferred from the battery to the plates of the capacitor.  This is a 
charging process of the capacitor which mean that the battery perform a 
work to store energy between the plates of the capacitor. 

Consider uncharged capacitor is connected to a battery as shown in figure 
6.8, at start the potential across the plates is zero and the charge is zero as 
well. 

 

V

C

S

 

Figure 6.8 

 

If the switch S is closed then the charging process will start and the potential 
across the capacitor will rise to reach the value equal the potential of the 
battery V in time t (called charging time). 

تستمر عملية شحن المكثف حتى يصبح فرق الجهد بين لـوحي المكثـف    Sبعد إغلاق المفتح 

  .رق جهد البطاريةمساوياً لف

Suppose that at a time t a charge q(t) has been transferred from the battery 
to capacitor.  The potential difference V(t) across the capacitor will be 
q(t)/C.  For the battery to transferred another amount of charge dq it will 
perform a work dW 

dq
C
qVdqdW ==   (6.11) 

The total work required to put a total charge Q on the capacitor is 

C
Qdq

C
qdWW

Q

2

2

0
=== ∫∫   (6.12) 

 

Using the equation q=CV 
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C
QUW
2

2

==     (6.13) 

2
2

2
1

2
1

2
1 CVQV

C
QU ===   (6.14) 

 

The energy per unit volume u (energy density) in parallel plate capacitor is 
the total energy stored U divided by the volume between the plates Ad 

 

Ad
CV

Ad
Uu

2
2
1

==    (6.15) 

For parallel plate capacitor 
d

A
C οε

=  

2

2
⎟
⎠
⎞

⎜
⎝
⎛=

d
Vu οε

    (6.16) 

2

2
1 Eu οε=     (6.17) 

Therefore the electric energy density is proportional with square of the 
electric field. 

 

لاحظ هنا أن الطاقة الكهربية المخزنة بين لوحي المكثف يمكن التعبير عنها باستخدام الطاقة 

فة الطاقة في الحجم المحصور الطاقة الكلية تساوي كثا.  uأو من خلال كثافة الطاقة  Uالكلية 

  .بين لوحي المكثف

توضحان عنوان هذا الموضوع وهو الطاقة المخزنة في ) 6.17(&)6.14(رقم  تانالمعادل

  .المكثف أو في المجال الكهربي
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Example 6.5 
Three capacitors of 8µF, 10µF and 14µF are connected to a battery of 
12V.  How much energy does the battery supply if the capacitors are 
connected (a) in series and (b) in parallel? 

 

Solution 
 (a) For series combination 

321

1111
CCCC

++=  

14
1

10
1

8
11

++=
C

 

This gives 

C = 3.37 µF 

Then the energy U is 

2

2
1 CVU =  

U = 1/2 (3.37×10-6) (12)2 = 2.43×10-4J 

(b) For parallel combination 

321 CCCC ++=  

C= 8+10+14=32µF 

The energy U is 

U = 1/2 (32×10-6) (12)2 = 2.3×10-3J 
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Example 6.6 
A capacitor C1 is charged to a 
potential difference Vo.  This 
charging battery is then removed 
and the capacitor is connected as 
shown in figure 6.9 to an 
uncharged capacitor C2,  

 

(a) What is the final potential difference Vf across the 
combination? 

(b) What is the stored energy before and after the switch S is 
closed?  

 

Solution 
 (a) The original charge qo is shared between the two capacitors since they 
are connected in parallel. Thus 

21 qqq +=ο  

q=CV 

ff VCVCVC 211 +=ο  

21

1

CC
C

VV f +
= ο  

(b) The initial stored energy is Uo 
2

12
1

οο VCU =  

The final stored energy Uf=U1+U2 
2

21

1
212

12
22

12
12

1 )( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=+=
CC

CV
CCVCVCU fff

ο  

οU
CC

C
U f ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
21

1  

 
Notice that Uf is less than Uo (Explain why) 

Vo

C1

Cqo

C2

S

 
 

Figure 6.9 
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Example 6.7 
Consider the circuit shown in figure 6.10 where 
C1=6µF, C2=3µF, and V=20V.  C1 is first charged 
by closing switch S1.  S1 is then opened, and the 
charged capacitor C1 is connected to the 
uncharged capacitor C2 by closing the switch S2.  
Calculate the initial charge acquired by C1 and 
the final charge on each of the two capacitors. 

 

Solution 
When S1 is closed, the charge on C1 will be 

Q1=C1V1=6µF � 20V=120µC 

 

When S1 is opened and S2 is closed, the total charge will remain constant 
and be distributed among the two capacitors, 

Q1=120µC-Q2 

 

The potential across the two capacitors will be equal, 

2

2

1

1

C
Q

C
QV ==  

F
Q

F
QF

µµ
µ

36
120 22 =

−
 

Therefore, 

Q2 = 40µC 
 

Q1=120µC-40µC=80µC 
 

 
 

Figure 6.10 
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Example 6.8 
Consider the circuit shown in figure 
6.11 where C1=4µF, C2=6µF, C3=2µF, 
and V=35V.  C1 is first charged by 
closing switch S to point 1.  S is then 
connected to point 2 in the circuit. 

(a) Calculate the initial charge 
acquired by C1, 

(b) Calculate the final charge on each of the three capacitors. 

(c) Calculate the potential difference across each capacitor after 
the switch is connected to point 2. 

 

Solution 
When switch S is connected to point 1, the potential difference on C1 is 
35V. Hence the charge Q1 is given by 

Q1 = C1xV=4x35 =140µC 

 

When switch S is connected to point 2, the charge on C1 will be distributed 
among the three capacitors.  Notice that C2 and C3 are connected in series, 
therefore 

6
4

2
1

6
1111

32

=+=+=
′ CCC

 

FC µ5.1=′  
 

We know that the charges are distributed equally on capacitor connected in 
series, but the charges are distributed with respect to their capacitance when 
they are connected in parallel. Therefore, 
 

CQ µ8.1014
5.14

140
1 =×

+
=  

But the charge Q′  on the capacitor C ′  is 

CQ µ2.388.101140 =−=′  

S
1 2

 
 

Figure 6.11 

Dr. sattar A. Mutlag

14



Capacitors and capacitance 

www.hazemsakeek.com  

Since C1 and C2 are connected in series then 

Q2=Q3=Q′=38.2µC 

 

To find the potential difference on each capacitor we use the relation 
V=Q/C 

Then, 

V1=25.45V 

V2=6.37V 

V3=19.1V 

 

 
 
 

Example 6.9 
Consider the circuit shown in figure 6.12 where C1=6µF, C2=4µF, 
C3=12µF, and V=12V.  

 

V  
Figure 6.12 

 
 

(a) Calculate the equivalent capacitance, 

(b) Calculate the potential difference across each capacitor. 

(c) Calculate the charge on each of the three capacitors. 
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Solution 
C2 and C3 are connected in parallel, therefore  

C ′  =C2+C3=4+12=16µF 

Now C ′  is connected in series with C1, therefore the equivalent capacitance 
is 

48
11

16
1

6
1111

1

=+=+
′

=
CCC

 

C = 4.36µF  
 

The total charge Q =CV = 4.36x12 = 52.36µC 

The charge will be equally distributed on the capacitor C1 and C ′  

Q1=Q′  =Q=52.36µC 

But Q′  = C ′ V’, therefore 

 V ′  = 52.36/16=3.27 volts 

The potential difference on C1 is 

V1=12-3.27=8.73volts 

The potential difference on both C2 and C3 is equivalent to V ′  since they 
are connected in parallel. 

V2 = V3 =3.27volts 

Q2 = C2V2 = 13.08µC 

Q3 = C3V3 = 39.24µC 
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Example 6.9 
Four capacitors are connected as shown in Figure 6.13. (a) Find the 
equivalent capacitance between points a and b. (b) Calculate the charge 
on each capacitor if Vab=15V. 

aa
Ac Ab

15uF 3uF

6uF

24uF

 

Figure 6.13 

Solution 
(a) We simplify the circuit as shown in the figure from (a) to (c). 

 

aa
Ac Ab

2.5uF

6uF

24uF

      

aa
Ac Ab

2.5uF 24uF

       

aa Ab
5.96uF

 

  (a)   (b)   (c) 
 

Firs the 15µF and 3µF in series are equivalent to 

 Fµ5.2
)3/1()15/1(

1
=

+
 

Next 2.5µF combines in parallel with 6µF, creating an equivalent 
capacitance of 8.5µF. 

The 8.5µF and 20µF are in series, equivalent to 

 Fµ96.5
)20/1()5.8/1(

1
=

+
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(b) We find the charge and the voltage across each capacitor by working 
backwards through solution figures (c) through (a). 

For the 5.96µF capacitor we have 

CCVQ µ5.891596.5 =×==  

In figure (b) we have, for the 8.5µF capacitor, 

 

V
C
QVac 5.10

5.8
5.89

===∆  

and for the 20µF in figure (b) and (a) CQ µ5.8920 =  

V
C
QVcb 47.4

20
5.89

===∆  

Next (a) is equivalent to (b), so VVcb 47.4=∆  and VVac 5.10=∆  

Thus for the 2.5µF and 6µF capacitors VV 5.10=∆  

CCVQ µ3.265.105.25.2 =×==  

CCVQ µ2.635.1066 =×==  

Therefore  

 CQ µ3.2615 =   CQ µ3.263 =  

For the potential difference across the capacitors C15 and C3 are 

 V
C
QV 75.1

15
3.26

15 ===∆  

 V
C
QV 77.8

3
3.26

3 ===∆  
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6.6 Capacitor with dielectric 

A dielectric is a non-conducting material, such as rubber, glass or paper.  
Experimentally it was found that the capacitance of a capacitor increased 
when a dielectric material was inserted in the space between the plates.  The 
ratio of the capacitance with the dielectric to that without it called the 
dielectric constant  κ of the material. 

ο

κ
C
C

=    (6.18) 

In figure 6.14 below two similar capacitors, one of them is filled with 
dielectric material, and both are connected in parallel to a battery of 
potential V.  It was found that the charge on the capacitor with dielectric is 
larger than the on the air filled capacitor, therefore the Cd>Co, since the 
potential V is the same on both capacitors. 
 

V CdCo

K

 
Figure 6.14 

 

If the experiment repeated in different way by placing the same charge Qo 
on both capacitors as shown in figure 6.15.  Experimentally it was shown 
that Vd<Vo by a factor of 1/κ. 
 

Vo
Co Cd

K
Vd

 
Figure 6.15 

 

κ
οV

Vd =    (6.19) 

Since the charge Qo on the capacitors does not change, then 
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ο

ο

ο

οο κ
κ V

Q
V

Q
V
Q

C
d

===   (6.20) 

 

For a parallel plate capacitor with dielectric we can write the capacitance. 

d
A

C οε
κ=     (6.21) 

 

 

Example 6.10 
A parallel plate capacitor of area A and separation d is connected to a 
battery to charge the capacitor to potential difference Vo.  Calculate the 
stored energy before and after introducing a dielectric material. 

 

Solution 
The energy stored before introducing the dielectric material, 

2
2
1

ooo VCU =  

The energy stored after introducing the dielectric material, 

oCC κ=  and 
κ

οV
Vd =  

κκ
κ oo

o
UV

CCVU =⎟
⎠

⎞
⎜
⎝

⎛==
2

2
12

2
1  

Therefore, the energy is less by a factor of 1/κ. 
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Example 6.11 
A Parallel plate capacitor of area 0.64cm2.  When the plates are in 
vacuum, the capacitance of the capacitor is 4.9pF. 

(a) Calculate the value of the capacitance if the space between the 
plates is filled with nylon (κ=3.4). 

(b)  What is the maximum potential difference that can be applied 
to the plates without causing discharge (Emax=14×106V/m)? 

 

Solution 
 (a)    oCC κ=  = 3.4×4.9 = 16.7pF 

(b)     Vmax=Emax×d 

 

To evaluate d we use the equation 

 m
C

A
d

o

4
12

512

1016.1
109.4

104.61085.8 −
−

−−

×=
×

×××
== οε

 

Vmax = 1×106×1.16×10-4=1.62×103 V 

 
 

 

Example 6.12 
A parallel-plate capacitor has a 
capacitance Co in the absence of 
dielectric.  A slab of dielectric material of 
dielectric constant κ and thickness d/3 is 
inserted between the plates as shown in 
Figure 6.16.  What is the new capacitance 
when the dielectric is present?  

 

 

dd

dd dd

1/3

2/3

K

 
 

Figure 6.16 

Dr. sattar A. Mutlag

21



Lectures in General Physics  

Dr. Hazem Falah Sakeek  

Solution 
We can assume that two parallel plate capacitor are connected in series as 
shown in figure 6.17,  

31 d
AC οκε

=  and  
322 d

A
C οε

=  

 

A
d

A
d

CCC οο εκε
323111

21

+=+=  

 

⎟
⎠
⎞

⎜
⎝
⎛ +

=⎟
⎠
⎞

⎜
⎝
⎛ +=

κ
κ

εκε οο

21
3

21
3

1
A

d
A

d
C

 

 

d
A

C οε
κ

κ
⎟
⎠
⎞

⎜
⎝
⎛

+
=

12
3

  ⇒ οκ
κ CC ⎟

⎠
⎞

⎜
⎝
⎛

+
=

12
3

 

 

 

 
 

C1K
dd

dd

1/3

2/3 C2

 

Figure 6.17 
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Capacitance (F) 

 

1 F = 1 C/V 

1 F = 10-6 F  (: micro) 

1 nF = 10-9 F  (n: nano) 

1 pF = 10-12 F  (p: pico) 

1 fF = 10-15 F  (f: femto) 

1 aF = 10-18 F  (a: atto) 

 

1. Parallel plate capacitance 

 

 
 

 
EdV   

 

A

Q
E

00 

  

 

The capacitance C is defined by 

 

Rectangle



d

A

Ed

AE

V

Q
C 00 

   (parallel-plate capacitor) 

 

((Note)) Example 

 
225 5 25 0.05A m cm m    ,  50.01 10d mm m   

 

1.11C F  

 

2. Cylindrical capacitor 

 

 
 

 
 



0

ˆ
2

r
r




E  

 

0

0 0

0

ˆ ˆ
2

ln( )
2 2

1
ln( )

2

b b

ba

a a

b

a

V d r rdr
r

b
dr

r a

q b

L a




 
 



     

   

 

 



E r

 

 

Since Vba<0 (the higher potential at r = a and the lower potential ar r = b), we put 

 

Vba = -V (V>0). 

 

The capacitance C is given by 

 

)ln(

2

)ln(

2
0

0

a

b

L

a

b

L

V

V

V

q
C 


 ,  (cylindrical capacitor). 

 

3. Spherical capacitance 

 

 
 

2

0

1
ˆ

4

q
r

r
E  
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Capacitance (F) 
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1. Parallel plate capacitance 

 

 
 

 
EdV   

 

A

Q
E

00 

  

 

The capacitance C is defined by 

 

Rectangle



d

A

Ed

AE

V

Q
C 00 

   (parallel-plate capacitor) 

 

((Note)) Example 
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1.11C F  

 

2. Cylindrical capacitor 

 

 
 

 
 



0

ˆ
2

r
r




E  

 

0

0 0

0

ˆ ˆ
2

ln( )
2 2

1
ln( )

2

b b

ba

a a

b

a

V d r rdr
r

b
dr

r a

q b

L a




 
 



     

   

 

 



E r

 

 

Since Vba<0 (the higher potential at r = a and the lower potential ar r = b), we put 

 

Vba = -V (V>0). 

 

The capacitance C is given by 

 

)ln(

2

)ln(

2
0

0

a

b

L

a

b

L

V

V

V

q
C 


 ,  (cylindrical capacitor). 

 

3. Spherical capacitance 

 

 
 

2

0

1
ˆ

4

q
r

r
E  

 



2

0

2

0 0 0 0

1
ˆ ˆ

4

1 1 1 1
[ ] ( )

4 4 4 4

b b

ba

a a

b

b

a

a

q
V d r rdr

r

q q q q b a
dr

r r a b ab



   

     

          
 

 



E r

 

 

Since Vba<0 (the higher potential at r = a and the lower potential ar r = b), we put 

 

Vba = -V (V>0). 

 

The capacitance C is given by 

 






















ab

ab

ab

ab

V

V

V

q
C 0

0 4
4




. (spherical capacitance) 

 

4. Isolated capacitance 

 

What is the capacitance when a R  and b →∞, we have 

 

RC 04  

 

where 

 

0 = 8.854187817 x 10-12 C2/Nm2 

 

((Units)) 

 

[F] = C/V = C2/(CV) = C2/J = C2/(Nm) 

 

or 

 

[F] = C2/(Nm) 

 

What is the capacitance of the Earth? 

 

C=708.981 F. 

 

where the radius of the Earth (R) is 

 

R = 6.372 x 106 m 

 

5. Capacitors in parallel and in series 

 

5.1 Parallel connection 

 



 
 

VCQ

VCQ

VCQ

33

22

11







 

 

VCCCQQQQ )( 321321   

 

or 

 

321 CCC
V

Q
C   

 

5.2 Series connection 

 

 
 

 

321

332211

VVVV

VCVCVCQ




 

 

or 

 



321

1111

CCCCQ

V
  

 

6. Examples 

6.1 Example-1 

One frequency models real physical system (for example, transmission lines or nerve 

axons) with an infinitely repeating series of discrete circuit elements such as capacitors. 

Such an array is shown here. What is the capacitance between terminals X and Y for such 

a line, assuming it extends indefinitely? All of the capacitors are identical and have 

capacitance C.  

 

 
 

(Schaum’s outlines Physics for Engineering and Science, by M.E. Browne) p.281. 

 

((Solution)) 

We assume that the effective capacitance Ceff is defined by the equivalent circuit given by 

 

 
 

From this equivalent circuit, we have the following relation 

 

eff

eff

eff
CC

CCC
C






2

)(
 

 

or 

 

022  CCCC effeff  

 

or 

 

CCCeff 62.0
2

15



  

 

 



6.2 Example-2 

A 6 F capacitor is charged by a 12 V battery and then disconnected. It is then 

connected to an uncharged 3 F capacitor. What is the final potential difference across 

each capacitor? 

 

((Solution)) 

V0 = 12 V 

C1 = 6 F 

C2 = 3 F 

 

 
 

(a) t<0 

 

 
 

 011 VCQ = 72 C. 

 

(b) t>0 

 



 
 

VCQ

VCQQ

2

11




 

 

or 

 

V
CC

VC

CC

Q
V

VCCQ

8

)(

21

01

21

1

211











 

 

 
 

Then we have 

 

CVCQ

VV

24

8

2 


 

 

7. Typical examples ((25-26)) 

Figure displays a 12.0 V battery and three uncharged capacitors of capacitances C1 = 

4.00 F, C2 = 6.00 F, and C3 = 3.00 F. The switch is thrown to the left side until capacitor 

1 is fully charged. Then the switch is thrown to the right. What is the final charge on (a) 

capacitor 1, (b) capacitor 2, and (c) capacitor 3? 

 



 
 

 

C1 = 4.00 F, C2 = 6.00 F, C3 = 3.00 F. V0 = 12.0 V 

 

((Solution)) 

 

 

1 1 0 4 12 48Q C V F V C      

 

1 1 1Q Q C V  ,  2 2 3 3Q C V C V  , 1 2 3V V V   

 

2
3 2 2 2

3

6
2

3

C F
V V V V

C F




    

 

From these relations we get 

 

1V 8V,  2

8

3
V  V, and 3

16

3
V   V. 

 

2 3 16Q Q  C. 

 

 
 

Vc V0 12 V
Q1

Q1

C1



 
 

8. The Energy of capacitance 

To “charge up” a capacitor, we have to remove electrons from the positive plate and 

carry them to the negative plate. In doing so, one fight against the electric field, which is 

pulling them back toward the positive conductor and pushing them away from the negative 

one. How much work does it take, then, to charge the capacitor up to a final amount Q? 

Suppose that at some intermediate stage in the process the charge on the positive plate is 

q , so that the potential difference is /q C . the work you must do to transport the next piece 

of charge, dq, is 

 

 
Fig. 0V Ed . 0q CV  

Q1 Q

Q1 Q

Q

Q

Q

Q

Q

C1

C2

C3

V1

V2

V3

V0

0

d

q

q

E q



0

( )W q Ed

V q

q
q

C

  

  

  

 

 

where F is the force and q F E  and 0

q
V Ed

C
   The total work necessary, then, to go 

from 0q   to q Q , is 

 
2

2

0

1

2 2

Q
q Q

W dq CV
C C

       

 

where Q is the total charge, Q CV , V  is the final electric potential of the capacitor. 

Using the work-energy theorem, we have the potential energy U as 

 
2 2

2 2

Q CV
U W

C
     

 

((Note-1)) Feynman 

Recalling that the capacity of a conducting sphere (relative to infinity) is 

 

04C R  

 

where R is the radius of sphere. Thus the energy of a charged sphere is 

 
2

08

Q
U

R
 . 

 

((Note-2)) 

 

The energy density u is defined by 

 

2 20
0

1 1 1
( )

2 2

AU
u Ed E

Ad Ad d


    

 

where Ad is the volume, 0 A
C

d


 , and V Ed . The total energy of the capacitance can be 

rewritten as 

 

2 3

0

1

2
U d  E r  

 



9. Example Problem ((25-68)) 

A cylindrical capacitor has radii a and b in Fig. Show that half the stored electric 

potential energy lies within a cylinder whose radius is abr  . 

 

((Solution)) 

 
 

((Solution)) 

From the Gauss’ theorem, we have 

 

r
h

rh
E

00 2

1

2

1
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The energy density is 
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The total energy U is 
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Uhalf is defined as 
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or 

 

)ln()ln(
2

2
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r
 , 

 

or 

 

abr  . 

 

10. Dielectrics in the presence of electric field: atomic view 

The molecules that make up the dielectric are modeled as dipoles. The molecules are 

randomly oriented in the absence of an electric field.  

 

 
Suppose that an external electric field is applied. This produces a torque on the molecules. 

The molecules partially align with the electric field. 



 
 

An external field can polarize the dielectric whether the molecules are polar or nonpolar. 

The charged edges of the dielectric act as a second pair of plates producing an induced 

electric field in the direction opposite the original electric field 

 
 

11. Experiment (I) Charge remained constant 

 

Walter Lewin” 8.02X MIT Physics, Electricity and Magnetism 

Lecture 8 

 

The capacitance of a set of charged parallel plates is increased by the insertion of a 

dielectric material. 

 

0
0

A
C

d


 , 0 A

C
d

 
 , 

0

C

C
  (dielectric constant) 

 

We discuss the physical meaning of   using the following experiments. 

 

(a) Step-1 (closed circuit) 

The capacitance ( 0C ) is charged to the charge 0Q  by connecting a voltage source 0V . 

 



0 0 0Q C V  

 

 
 

(b) Step-2 (open circuit) 

The voltage source is disconnected from the circuit. The charge remains unchanged 

during this process. 

 

0 0 0Q C V  

 

 
 

(c) Step-3 (open circuit) 

A dielectric material is inserted into the space between two electrodes of the 

capacitance. The capacitance changes from 0C C . The voltage across the capacitance 

changes. 

 

V0

Q0

Q0

C0

V0

Q0

Q0

C0



 
 

The free charge 0Q  remains unchanged, while the voltage across the capacitance changes 

from 0V  to V ,  

 

0Q CV  

 

or 

 

0 0 0Q C V CV   

 

Suppose that 

 

0

C

C
  

 

(The dielectric medium is inserted into the interlamellar space of the capacitance) 

 

Then we have 

 

0

0

1V C

V C 
    0

1
V V


  

 

Since 0 0V E d  and V Ed  

 

0

1
E E


  

 

where d is the separation distance between two electrodes of the capacitance. We note that 

 



0 0 0C V Q
C

V V
   

 

((Note)) 

 

0

1
E E


   0

1
V V


  

 

Since 

 

0

f b V
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
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0
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we get 

 

0 0

1f b f  
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
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1
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
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12. Experiment II Constant voltage source 

(a) Step-I 

The capacitance ( 0C ) is charged to the charge 0Q  by connecting a voltage source 0V . 

 

0 0 0Q C V  

 

 
 

(b) Step-II 

V0

Q0

Q0

C0



While the battery continues to be connected, the dielectric is inserted into a gap between 

two electrodes of the capacitance. While the voltage remains unchanged as 0V , the charge 

changes from 0Q  to Q. 

 

 
 

0Q CV  

 

Since 0C C , we have 

 

0

0 0 0 0

CVQ C

Q C V C
   ,  0Q Q  

 

The electric field E remains unchanged during this process, since the applied voltage is 

kept constant. 

 

((Note)) 

 



 
 

0 0 fC V A  

 

d

f

f

AirV0



 
 

 

0 0 0 ( ' ')f f PCV C V A A        , 

 

or 

 

' 'f P f     

 

or 

 

' 'f f P     

 

13. Polarization vector P 

 

 



 

Suppose that the molecules with permanent electric dipole moments are lined neatly, 

all pointing the same way, and frozen in position. There are N dipoles (with electric dipole 

moment p) per cubic meters. We shall assume that N is so large that any macroscopically 

small volume d contains quite a large number of dipoles. The total dipole strength in such 

a volume is pNd. At any point far away from this volume element compared with its size, 

the electric field from these particular dipoles would be practically the same if they were 

replaced by a single dipole moment of strength pNd. We shall call pN the density of 

polarization, and denoted it by P. Then Pd is the dipole moment to be associated with any 

small volume element d.  
 

14. Feynman’s comment on the expression of b and b 

Feynman’s lecture on physics 

 

 
 

We consider the above situation, where P is uniform in the above figure. We have a 

positive charge at the one side 

 

Q = enA 

 

and a negative charge  

 

-Q = -enA, 

 

where A is the surface area,  is the displacement, -e is the electron charge, and n is the 

number of electrons per unit volume. From the definition, the surface charge density is 

given by 

 

Ppnne
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Q
b 


 )(   

 



where p (= e) is the electric dipole moment. The vector P is the polarization vector. The 

magnitude P is the electric dipole moment per unit volume. 

What happens to b when P does not point to the direction perpendicular to the surface? 

 

 
 

The total charge in the surface region (d) is equal to 

 

Q' = enAd 

 

When the angle between P and the normal unit vector n (perpendicular to the surface) is , 

the relation between d and  is given by 

 

 cosd  

 
 

Then the surface charge density is 

 

 coscoscos)()(
'
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Q
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or 



 

b  P n  

 

From the Gauss’ law,  

 

bd da da       P P n . (1) 

 

Since the total charge is equal to zero, we have 

 

0  dad bb  , (2) 

 

where b is the volume charge density.  

 

 
 

From Eqs.(1) and (2), we get 

 

bd d      P  

 

or 

 

b    P  

 

((Note)) We define the current density due to the polarization vector P as 

 

b
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which corresponds to the continuity of the polarization current. 

 

15. Displacement vector: Derivation of the b and b from the electric potential 

(a) 1D case 

Here we also assume that there is no net charge in the system. So we have only the 

dipole moments to consider as sources of a distant field. The figure shows a slender column, 

or cylinder, of this polarized material. Its cross section is da, and it extends vertically from 

z1 to z2. The polarization density P within the column is uniform over the length and points 

in the positive z direction. Now we calculate the electrical potential, at some external point, 

of this column polarization. An element of the cylinder, of height dz, has a dipole moment 

Pdadz. It contribution to the potential at the point A can be described by 
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The potential due to the entire column is 
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Since drdz cos ,  
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This is precisely the same as the expression for the potential at A that would be produced 

by two point charges, a positive charge of magnitude Pda sitting on the top of the column 

at a distant r2 from A, and a negative charge of the same magnitude at the bottom of the 

column. The source consisting of a column of uniformly polarized matter is equivalent to 

two concentrated charges. 

 

(b) General case 

We consider a finite piece of dielectric material which is polarized. We define a 

polarization P(r’) at each point r’ in the system. Each volume d’ is characterized by an 

electric dipole moment P(r’)d’. The contribution of the electric potential at the point r 

from the moment P(r’)d’ is given by 
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Then the entire potential at point r is obtained as 
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We use the formula of the vector analysis, 
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and 

 

' ( ) ' 'f f f      A A A , 

 

where f is any scalar point function and A is an arbitrary vector point function. The prime 

indicates differentiation with respect to the prime coordinates. Letting A = P and 
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Using the relation 
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we have 
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where the volume integral of 
( ')

' ( )
'

 


P r

r r
 is replaced by a surface integral through the 

application of the Gauss’ theorem and n’ is the outward normal to the surface element da’. 

Here we define 

 

b nP   P n , 

 

and 

 

b    P . 

 

The surface charge density b  is given by the component of the polarization P normal to 

the surface and the volume charge density b  is a measure of the nonuniformity of the 

polarization P in side the system. So we have the final form of V(r) as  
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(c) Electric displacement D 

 

0 f P    E  

 

with 

 

P  P  

 



where P is the polarization vector (charge per unit area). Thus we have 

 

0( ) f   E P  

 

or 

 

f D  

 

It is customary to give the combination 0 E P  a special name, the electric displacement 

vector and its own symbol D, 

 

0 D E P   

 

Using the Gauss’s law, we have 
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We have 
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16 Capacitance with dielectric (I) 

Here we discuss the capacitance of the dielectric. 

 



 
 

In this figure, f  is the free charge. P is the polarization vector. The inductive charge 

ind b
   is given by 

 

ind b
P    P n  

 

where n is the vector normal to the boundary. The total electric field E is obtained as 
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using the Gauss’s theorem. Note that 
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where 
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Then we have 
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where  is dielectric constant of dielectric. 

 

Gauss’ law with dielectrics 

 

0 fd q    E a  

 

________________________________________________________________________ 

Table:  Dielectric constants 

 

 
 

(vacuum) = 1.000000 

(paper) = 3.5 

(transformer oil) = 4.5 



(SrTiO3) = 310 

(liquid water at 25°C) = 78.5 

 

_______________________________________________________________________ 

The polarization vector is defined as 
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Thus we have 
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leading to the relation 

 
1    

 

where  is called the electric susceptibility. 

 

17. Capacitance of dielectric (II) 

The capacitance C of the dielectric is defined by 

 

fQ
C

V
 . 



 

where 0C  is the capacitance of the vacuum. The validity of this definition is explained in 

Sec. 
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and 

 

1 1
f fV Ed E d V

 
    

 

Thus we have the capacitance, 
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18. Capacitors with dielectrics in series and in parallel connections 

We calculate the capacitance of this system. Two capacitors are connected in series. 

 
 



2

2

1

1

2

2

1

1
0

2

20

1

10

2

20

1

10

21

21

2

202

1

101

dd

dd
A

d

A

d

A

d

A

d

A

CC

CC
C

d

A
C

d

A
C



























 

 

Next we calculate the capacitance of the system where two capacitors are connected in 

parallel 

 
 

)( 2211
0

2
20

1
1021

2
202

1
101

AA
d

d

A

d

A
CCC

d

A
C

d

A
C


















 

 

19. Work-energy theorem for capacitance (I) 

Walter Lewin: 8.02X Electricity and Magnetism 

 

We consider the capacitance consisting of two conducting plates which are parallel to 

each other. The separation distance between two plates id d. The upper plate is positively 

charged; Q A , while the lower late is negatively charged as Q A   . The electric 

field is constant is given by 

 

0

E



  

 

We now consider a case when the upper plate is moved upward by a force F (along the x 

direction). Note that the weight of the upper plate is negligibly small. We use the work-

energy theorem, 

 

K W U     



 

 
 

The work is given by 

 

W Fdx U    

 

where F is the conservative force, and U is the potential energy 
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the force F is  
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which is an attractive force. If you want to move the plate to the upward, you need to 

apply an external force 
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So we have the work 
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where Ax is the volume. The electric field energy density is obtained as 
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20. Work energy theorem for capacitance 

(1) Force on a capacitance plate: (Problem 3-26) Purcell and Morin 

A parallel-plate capacitor consists of a fixed plate and a moval plate that is allowed to 

slide in the direction parallel to the plates. Let x be the distance of overlap as shown in Fig. 

The separation between the plates is fixed. 

(a) Assume that the plates are electrically isolated, so that their charges Q  are 

constant. In terms of Q and the (variable) capacitance C, derive an expression for 

the leftward force on the movable plate. 

(b) Now assume that the plates are connected to a battery, so that the potential 

difference V is held constant. In terms of V  and the capacitance C, derive an 

expression for the force. 

(c) If the movable plate is held in place by an opponent force, then either of the above 

two setups could be the relevant one, because nothing is moving. So the forces in 

(a) and (b) should be equal. Verify that this is the case.  

 

 
 

(a) Q = constant 

 

Work-energy theorem 

 

K W U      
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with Q CV . The force F is given by 

 

U F  

 

or 
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for the 1D system. Note that 
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The capacitance C increases with increasing x. 

 

0( )
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(b) V = constant 

 

Work-energy theorem: 

 

bK W W U       F r  

 

where bW  is the work required to move each of the charge increment. 
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or 
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Then we have 
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for the 1D system, where 
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21. Displacement vector D 

 

 
Fig. P is the polarization of the dielectric. f is the free surface charge density due to the 

free charges located on the two parallel plates. b ind  , b is the bound surface 

charge density due to the polarization of the dielectric. E0 is an external electric 

field. E is an electric field inside the dielectrics. b is equal to P. 
0

0 
P

EE  . P is 

related to E through EP 0 . 

 

The external field E0 inside the air (the space between two parallel metal plates is air) 

is given by 
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or 

 

0 f fd q   E a�  

 

The electric field inside the dielectric (the space between two parallel metal plates is 

filled with dielectric) is given by 
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E
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or 

 

0 eff f bd q q q     E a�  

 

where qf is the free charge density and qb is the bound charge density. 

Here we define the electric displacement D by 

 

0f fD E     (electric displacement) 

 

or 

 

fd q  D a�   

 

This equation states Gauss’ law in its general form. It is applicable to any dielectric medium 

as well as to a vacuum. This is a useful way to express Gauss’ law, in the context of 

dielectrics, because it makes reference only to free charges, and free charge is the stuff we 

control (Griffiths, Introduction to electrodynamics). 

 

Since f E E , D is described as 

 

0 0f   D E E  

 

Then we get 
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or 

 

0 fd q    E a�  (Gauss’ law with dielectric) 
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leading to the formula 
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22. Application of the Gauss’ law 

We apply the Gauss theorem on the Gaussian surface (cylindrical surface) 
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Since f D   and in P  , we have 

 

0E D P   ,  0D E P   

 



 
 

23. Example: D and E for the capacitor 

We consider the simple case of the capacitor where the dielectric with k between two 

parallel plates. 

 

The displacement vector D is given by 

 

fD   

 

D is related to the electric field E by 
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or 
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Fig. f   and ind b  in this Fig. 

 

The electric field E is also derived as 
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The bound surface charge b is obtained as 
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In summary, we show the schematic diagram for the fields D and E in the dielectric in 

the parallel-plate capacitor; the displacement vector D depends only on the free charge and 

is the same inside and outside (air gaps). 
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24. Maxwell/s equation with E, D, and P 

The effect of the polarization is equivalent to a charge density b  given by 

 

b    P  

 

The divergence of E is related to the effective charge density eff by 
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where f  is a free charge density. This equation is rewritten as 
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We define D as 

 

0 D E P  

 

with 
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In summary 
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25. Example: D and E for the simple case with spherical symmetry 

We consider the simple case of dielectric sphere where the point charge is located at 

the center. 

 

 
 

We apply the Gauss’ law for the Gaussian surface (dashed line) 
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or 
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where qf (= q) is the free charges. The electric field E is related to D by a relation 

 

ED 0  

 

Then we have 
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The effective charge inside the dashed line (qeff) is evaluated as 
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Here qeff consists of free charge (q) and bound charge (qb). 
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26. Example Problem 25-53 (SP25-53) 

The space between two concentric spherical shells of radii b = 1.70 cm and a = 1.20 

cm is filled with a substance of dielectric constant  = 23.5. A potential difference V = 

73.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the 

device, (b) the free charge q on the inner shell, and (c) the charge q’ induced along the 

surface of the inner shell. 

 



 
 

((Solution)) 

a = 1.20 cm 

b = 1.70 cm 

 = 23.5 

Vba = 73.0 V 

 

We apply the Gauss’ law for the Gaussian surface (dashed line) 

 

fd q q  D a   (true charge) 

 

Then we have 
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or 
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Using the relation give by  
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The electric field E is derived as 
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(b) 
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(c) 

Gaussian surface (dotted line in the vicinity of r = a) 
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where qb is the bound charge (induced charge) 

 

For the Gaussian surface just outside r = a,  
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The electric field E is also given by 
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Using the dielectric constant , we have 
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APPENDIX 

Surface charge density in terms of the polarization vector ((Feynman)) 

We now consider the situation in which the polarization vector P is not everywhere the 

same. If the polarization is not constant, we would expect in general to find a charge density 

in the volume, because more charge might come into one side of a small volume element 

than leaves it on the other. How can we find out how much charge is gained or lost from a 

small volume?  

We calculate how much charge moves across any imaginary surface when the material 

is polarized. The amount of charge that goes across a surface is just P times the surface 

area if the polarization is normal to the surface. Of course, if the polarization is tangential 

to the surface, no charge moves across it. Following the same arguments, it is easy to see 

that the charge moved across any surface element is proportional to the component of P 

perpendicular to the surface.  

 

(a) The case of polarization vector which is normal to the top of the surface 

We assume that the electric dipole moment is normal to the top of the surface. 

 



 
 

 
 

The surface charge density is obtained as 
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which is equal to the magnitude of the polarization vector, where V A  

 

(b) The case of polarization vector which is not normal to the top of the surface 

We assume that the electric dipole moment is not normal to the top of the surface. 

 



 
 

 
 



 
 

The surface charge density is 
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or 

 

P  P n . 

 

where  cosV A  . 

 

 

((Feynman)) 

In his book, Feynman derived the expression P  P n  using the following Fig. 

 



 
 

Fig. The charge moved across an element of an imaginary surface in a dielectric is 

proportional to the component of P normal to the surface. d  . 
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The magnetic field

A bar magnet has a magnetic field
around it. This field is 3D in nature and
often represented by lines LEAVING
north and ENTERING south

The magnetic field is a vector that
has both magnitude and direction.

The direction of the magnetic field
at any point in space is the
direction indicated by the north
pole of a small compass needle
placed at that point.
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The properties of magnetic field line

1. The lines originate from the north pole and end on the south pole; they 
do not start or stop in mid-space.

2. The magnetic field at any point is tangent to the magnetic field line at 
that point.

3. The strength of the field is proportional to the number of lines per unit 
area that passes through a surface oriented perpendicular to the lines.

4. The magnetic field lines will never come to cross each other.
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Magnetic force on moving 
charge

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 9

Magnetic force on moving
charge

When a charge is placed in a magnetic field, it experiences a 
magnetic force if two conditions are met:
1. The charge must be moving. No magnetic force acts on a 

stationary charge. 
2. The velocity of the moving charge must have a component that 

is perpendicular to the direction of the field. 
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

We can define a magnetic field B at some point in space in terms
of the magnetic force FB the field exerts on a charged particle
moving with a velocity v, which we call the test object.

N

N

S

S

+

v

B
Experiments on various charged
particles moving in a magnetic
field give the following results:

(1) The magnitude FB of the
magnetic force exerted on the
particle is proportional to the
charge q and to the speed v of
the particle.
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

(2) When a charged particle
moves parallel to the magnetic
field vector, the magnetic force
acting on the particle is zero.

(3) When the particle’s velocity
vector makes any angle θ ≠ 0 with
the magnetic field, the magnetic
force acts in a direction
perpendicular to both v and B;
that is, FB is perpendicular to the
plane formed by v and B.
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

(4) The magnetic force exerted
on a positive charge is in the
direction opposite the direction
of the magnetic force exerted
on a negative charge moving in
the same direction.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 13

Properties of the magnetic force on a charged 
particle moving in a magnetic field

(5) The magnitude of the magnetic force exerted on the
moving particle is proportional to sinθ, where θ is the angle
the particle’s velocity vector makes with the direction of B.

Vector expression for the magnetic force on a charged particle moving 
in a magnetic field

FB = qvBsin 
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Direction of  the magnetic force? 
Right Hand Rule

To determine the DIRECTION of the force on a POSITIVE
charge we use a special technique that helps us understand 
the 3D perpendicular nature of magnetic fields.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 15

Unit of Magnetic Field
SI unit of magnetic field is the newton per coulomb-meter per 
second, which is called the tesla  (T):

Because a coulomb per second is defined to be an ampere,

A non-SI magnetic-field unit in common use, called the gauss
(G), is related to the tesla through the conversion 1 T = 104 G.

1 T = 1 N
C.m/s

1 T = 1 N
A.m

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 16



10/15/2014

9

Some Approximate Magnetic Field 
Magnitudes

Source of Field Field Magnitude (T)
Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Magnetic Bar 10-2

Surface of the Sun 10-2

Surface of the Earth 0.5 × 10-4

Inside human brain due to nerve impulses 10-13

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 17

Motion of charge particle in
- Electric field 
- Magnetic field 
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Differences between 
Electric and Magnetic 
Forces

1. The electric force vector is along the direction of the electric field, whereas
the magnetic force vector is perpendicular to the magnetic field.

2. The electric force acts on a charged particle regardless of whether the
particle is moving, whereas the magnetic force acts on a charged particle
only when the particle is in motion.

3. The electric force does work in displacing a charged particle, whereas the
magnetic force associated with a steady magnetic field does no work when
a particle is displaced because the force is perpendicular to the
displacement of its point of application.

The kinetic energy of a charged particle moving through a magnetic field
cannot be altered by the magnetic field alone. The field can alter the
direction of the velocity vector, but it cannot change the speed or kinetic
energy of the particle.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 19

Example 1

An electron in an old-style television
picture tube moves toward the front
of the tube with a speed of 8.0×106

m/s along the x axis. Surrounding the
neck of the tube are coils of wire that
create a magnetic field of magnitude
0.025 T, directed at an angle of 60o to
the x axis and lying in the xy plane.

Calculate the magnetic force on the
electron.
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Solution

Use one of the right-hand rules to
determine the direction of the force on
the electron

= (1.6 × 10-19 C)(8.0 × 106 m/s)(0.025 T)
(sin 60o)

= 2.8 × 10-14 N

FB = qvBsin 
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Example 2
Determine the direction of the unknown variable for a proton moving
in the field using the coordinate axis given

+y

+x+z

B = -x
v = +y
F =+z

B =+Z
v = +x
F =-y

B = -z
v = +y
F =-x
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Example 3

A spatially uniform magnetic field cannot exert a magnetic force 
on a particle in which of the following circumstances? There may 
be more than one correct statement. 
◦ (a) The particle is charged. 
◦ (b) The particle moves perpendicular to the magnetic field. 
◦ (c) The particle moves parallel to the magnetic field. 
◦ (d) The magnitude of the magnetic field changes with time. 
◦ (e) The particle is at rest.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 23

Example 4
A particle with electric charge is fired into a region of space where the electric 
field is zero. It moves in a straight line. Can you conclude that the magnetic 
field in that region is zero? 

◦ (a) Yes, you can.
◦ (b) No; the field might be perpendicular to the particle’s velocity. 
◦ (c) No; the field might be parallel to the particle’s velocity.
◦ (d) No; the particle might need to have charge of the opposite sign
◦ to have a force exerted on it. 
◦ (e) No; an observation of an object with electric charge gives no information about a 

magnetic field.
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Example 5
Classify each of the following statements as a characteristic (a) of electric 
forces only, (b) of magnetic forces only, (c) of both electric and magnetic 
forces, or (d) of neither electric nor magnetic forces. 

(1) The force is proportional to the magnitude of the field exerting it.
(2) The force is proportional to the magnitude of the charge of the object on which 
the force is exerted. 
(3) The force exerted on a negatively charged object is opposite in direction to the 
force on a positive charge. 
(4) The force exerted on a stationary charged object is nonzero. 
(5) The force exerted on a moving charged object is zero. 
(6) The force exerted on a charged object is proportional to its speed. 
(7) The force exerted on a charged object cannot alter the object’s speed. 
(8) The magnitude of the force depends on the charged object’s direction of motion. 
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Example 6

Determine the initial direction
of the deflection of charged
particles as they enter the
magnetic fields shown in the
Figure
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Example 7
Find the direction of the magnetic field acting on a positively
charged particle moving in the various situations shown in the
Figure if the direction of the magnetic force acting on it is as
indicated.
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Solve by Your self
�Two charged particles are projected in the same direction into a
magnetic field perpendicular to their velocities. If the particles
are deflected in opposite directions, what can you say about
them?

�How can the motion of a moving charged particle be used to
distinguish between a magnetic field and an electric field?

�Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.
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Charged Particle in a Magnetic 
Field

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 3

Consider a +ve charged particle
moving in an external magnetic
field with its velocity
perpendicular to the field.

The magnetic force is always
directed toward the center of the
circular path.

The magnetic force causes a
centripetal acceleration,
changing the direction of the
velocity of the particle.

We use the particle under a net force model to write Newton’s second 
law for the particle:

Because the particle moves in a circle, we also model it as a particle in
uniform circular motion and we replace the acceleration with centripetal
acceleration:

This expression leads to the following equation for the radius of 
the circular path:
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F = FB =ma 

FB = qvB =
mv2

r

r =
mv
qB

The radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge q on the
particle and to the magnitude of the magnetic field B.

Radius of the circular path
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The angular speed of the particle

The period of the motion (the time interval the particle requires
to complete one revolution) is equal to the circumference of the
circle divided by the speed of the particle:

These results show that the angular speed of the particle and the
period of the circular motion do not depend on the speed of the
particle or on the radius of the orbit.
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T =
2 r
v

=
2 
 

=
2 m
qB

The angular speed ω is often referred to as the cyclotron frequency because
charged particles circulate at this angular frequency in the type of
accelerator called a cyclotron.

 =
v
r

=
qB
m

angular speed 

r =
mv
qB

period of the motion 

General Case
If a charged particle moves in a uniform magnetic field with its
velocity at some arbitrary angle with respect to B, its path is a
helix.
Same equations apply, 
with
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Example 1
A proton is moving in a circular orbit of radius 14 cm in a uniform 
0.35 T magnetic field perpendicular to the velocity of the proton. 
Find the speed of the proton.
Solution

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 7

 =
v
r

=
qB
m

v =
qBr
m

Example 2
In an experiment designed to measure the
magnitude of a uniform magnetic field, electrons
are accelerated from rest through a potential
difference of 350 V and then enter a uniform
magnetic field that is perpendicular to the velocity
vector of the electrons. The electrons travel along
a curved path because of the magnetic force
exerted on them, and the radius of the path is
measured to be 7.5 cm.

(A) What is the magnitude of the magnetic field?

(B) What is the angular speed of the electrons?
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Solution (A) the magnitude of the magnetic field
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r =
mv
qB

Solution B the angular speed of the electrons
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In many applications, charged particles will move in the presence 
of both magnetic and electric fields.
In that case, the total force is the sum of the forces due to the 
individual fields.
In general (The Lorentz force): 
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Electric Force Magnetic Force
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Velocity Selector
A uniform electric field is perpendicular to a
uniform magnetic field.

When the force due to the electric field is equal
but opposite to the force due to the magnetic
field, the particle moves in a straight line.

This selects particles with velocities of the value

Slit
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v =
E
B

Mass Spectrometer
A mass spectrometer separates ions
according to their mass-to-charge ratio.

A beam of ions passes through a velocity
selector and then enters a second magnetic
field where the ions move in a semicircle of
radius r before striking a detector at P.

From the equation

The ratio of m/q

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 14

r =
mv
qBo

m
q

=
rBo
v
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The velocity is given by the velocity selector of the first part as

we can determine m /q by measuring the radius of curvature and
knowing the field magnitudes B, B0 , and E.
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v =
E
B

m
q

=
rBoB
E

m
q

=
rBo
v

Mass Spectrometer

A cyclotron  is a device that can accelerate charged particles to 
very high speeds.
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We can obtain an expression for the kinetic energy of the ion 
when it exits the cyclotron in terms of the radius R of the dees.
we know that

the kinetic energy is

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 18

m
q

=
RBo
v

v =
qBR
m

K =
1
2
mv2 =

q2B2R2

2m
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Solve by your self
1. An electron moves in a circular path perpendicular to a uniform magnetic

field with a magnitude of 2.00 mT. If the speed of the electron is 1.50 x 107

m/s, determine (a) the radius of the circular path and (b) the time interval
required to complete one revolution.

2. An electron moves in a circular path perpendicular to a constant magnetic
field of magnitude 1.00 mT. The angular momentum of the electron about
the center of the circle is 4.00 x 10-25 kg.m2/s. Determine (a) the radius of
the circular path and (b) the speed of the electron.

3. Consider the mass spectrometer. The magnitude of the electric field
between the plates of the velocity selector is 2.50 x 103 V/m, and the
magnetic field in both the velocity selector and the deflection chamber has
a magnitude of 0.035T. Calculate the radius of the path for a singly charged
ion having a mass m = 2.18 x 10-26 kg.
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Magnetism and Alternating Current

Unit 1: Magnetic Fields

Lecture 3: Magnetic force acting 
a current-carrying conductor
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1.1 Magnetic Fields and Forces.

1.2 Motion of a Charged Particle in a 
Uniform Magnetic Field.

1.3 Applications Involving Charged 
Particles Moving in a Magnetic Field.

1.4 Magnetic Force Acting on a Current-
Carrying Conductor.

1.5 Torque on a Current Loop in a 
Uniform Magnetic Field.

1.6 The Hall Effect.

Unit 1: Magnetic Fields
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A force is exerted on a current-
carrying wire placed in a 
magnetic field.

◦ The current is a collection of 
many charged particles in 
motion.

The direction of the force is 
given by the right-hand rule
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Force on a Wire, the equation
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Consider a straight segment of wire of
length L and cross-sectional area A
carrying a current I in a uniform
magnetic field B.
The magnetic force exerted on a charge
q moving with a drift velocity vd.

To find the total force acting on the

wire, we multiply the force

exerted on one charge by the number

of charges in the segment.
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Force on a Wire, the equation, 
continue

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 7

The number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force
on the segment of wire of length L is

the current in the wire is I= nqvdA.  Therefore,

where L is a vector that points in the direction of the current I and
has a magnitude equal to the length L of the segment. This
expression applies only to a straight segment of wire in a uniform
magnetic field.

Force on a Wire, the formula
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General Equation
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Now consider an arbitrarily shaped
wire segment of uniform cross
section in a magnetic field as shown
in the Figure.

The magnetic force exerted on a
small segment of vector length ds in
the presence of a field B is,

General Equation, continue
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To calculate the total force FB acting
on the wire shown in the Figure, we
integrate Equation over the length of
the wire:

where a and b represent the
endpoints of the wire.
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Example 1

The same current-carrying wire is placed in the same
magnetic field B in four different orientations.
Rank the orientations according to the magnitude of the
magnetic force exerted on the wire, largest to smallest.

Example 2

A straight, horizontal length of copper wire is immersed in a
uniform magnetic field. The current through the wire is out of
page. Which magnetic field can possibly suspend this wire to
balance the gravity?

A B C D

See problem 3 in problems to solve by your self..
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Example 3
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A wire bent into a semicircle
of radius R forms a closed
circuit and carries a current I.
The wire lies in the xy plane,
and a uniform magnetic field
is directed along the positive y
axis as in the Figure.
Find (A) the magnitude and
direction of the magnetic
force acting on the straight
portion of the wire and (B) on
the curved portion.

Solution

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 14

The force F1 on the straight
portion of the wire is out of the
page.
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Solution, continue
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The force F2 on the curved
portion is into the page.
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The force on the curved portion is the same in magnitude as the
force on a straight wire between the same two points.

The net magnetic force acting on any closed current loop in a
uniform magnetic field is zero.
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1. A conductor carrying a current I=15.0 A is directed along the positive x axis
and perpendicular to a uniform magnetic field. A magnetic force per unit
length of 0.120 N/m acts on the conductor in the negative y direction.
Determine (a) the magnitude and (b) the direction of the magnetic field in
the region through which the current passes.

2. A wire carries a steady current of 2.40 A. A straight section of the wire is
0.750 m long and lies along the x axis within a uniform magnetic field, B =
1.60k T. If the current is in the positive x direction, what is the magnetic
force on the section of wire?
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3. A straight, horizontal length of copper wire has a

current i=28 A through it. What are the magnitude

and direction of the minimum magnetic field needed

to suspend the wire—that is, to balance the

gravitational force on it? The linear density (mass per

unit length) of the wire is 46.6 g/m.
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Charged Particle in a Magnetic 
Field

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 3

Consider a +ve charged particle
moving in an external magnetic
field with its velocity
perpendicular to the field.

The magnetic force is always
directed toward the center of the
circular path.

The magnetic force causes a
centripetal acceleration,
changing the direction of the
velocity of the particle.

We use the particle under a net force model to write Newton’s second 
law for the particle:

Because the particle moves in a circle, we also model it as a particle in
uniform circular motion and we replace the acceleration with centripetal
acceleration:

This expression leads to the following equation for the radius of 
the circular path:
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F = FB =ma 

FB = qvB =
mv2

r

r =
mv
qB

The radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge q on the
particle and to the magnitude of the magnetic field B.

Radius of the circular path
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The angular speed of the particle

The period of the motion (the time interval the particle requires
to complete one revolution) is equal to the circumference of the
circle divided by the speed of the particle:

These results show that the angular speed of the particle and the
period of the circular motion do not depend on the speed of the
particle or on the radius of the orbit.
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T =
2 r
v

=
2 
 

=
2 m
qB

The angular speed ω is often referred to as the cyclotron frequency because
charged particles circulate at this angular frequency in the type of
accelerator called a cyclotron.

 =
v
r

=
qB
m

angular speed 

r =
mv
qB

period of the motion 

General Case
If a charged particle moves in a uniform magnetic field with its
velocity at some arbitrary angle with respect to B, its path is a
helix.
Same equations apply, 
with

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 6

2 2
y zv v v = +
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Example 1
A proton is moving in a circular orbit of radius 14 cm in a uniform 
0.35 T magnetic field perpendicular to the velocity of the proton. 
Find the speed of the proton.
Solution
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 =
v
r

=
qB
m

v =
qBr
m

Example 2
In an experiment designed to measure the
magnitude of a uniform magnetic field, electrons
are accelerated from rest through a potential
difference of 350 V and then enter a uniform
magnetic field that is perpendicular to the velocity
vector of the electrons. The electrons travel along
a curved path because of the magnetic force
exerted on them, and the radius of the path is
measured to be 7.5 cm.

(A) What is the magnitude of the magnetic field?

(B) What is the angular speed of the electrons?
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Solution (A) the magnitude of the magnetic field
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r =
mv
qB

Solution B the angular speed of the electrons
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In many applications, charged particles will move in the presence 
of both magnetic and electric fields.
In that case, the total force is the sum of the forces due to the 
individual fields.
In general (The Lorentz force): 

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 12

Electric Force Magnetic Force
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Velocity Selector
A uniform electric field is perpendicular to a
uniform magnetic field.

When the force due to the electric field is equal
but opposite to the force due to the magnetic
field, the particle moves in a straight line.

This selects particles with velocities of the value

Slit
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v =
E
B

Mass Spectrometer
A mass spectrometer separates ions
according to their mass-to-charge ratio.

A beam of ions passes through a velocity
selector and then enters a second magnetic
field where the ions move in a semicircle of
radius r before striking a detector at P.

From the equation

The ratio of m/q

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 14

r =
mv
qBo

m
q

=
rBo
v
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The velocity is given by the velocity selector of the first part as

we can determine m /q by measuring the radius of curvature and
knowing the field magnitudes B, B0 , and E.
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v =
E
B

m
q

=
rBoB
E

m
q

=
rBo
v

Mass Spectrometer

A cyclotron  is a device that can accelerate charged particles to 
very high speeds.
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We can obtain an expression for the kinetic energy of the ion 
when it exits the cyclotron in terms of the radius R of the dees.
we know that

the kinetic energy is
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m
q

=
RBo
v

v =
qBR
m

K =
1
2
mv2 =

q2B2R2

2m
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Solve by your self
1. An electron moves in a circular path perpendicular to a uniform magnetic

field with a magnitude of 2.00 mT. If the speed of the electron is 1.50 x 107

m/s, determine (a) the radius of the circular path and (b) the time interval
required to complete one revolution.

2. An electron moves in a circular path perpendicular to a constant magnetic
field of magnitude 1.00 mT. The angular momentum of the electron about
the center of the circle is 4.00 x 10-25 kg.m2/s. Determine (a) the radius of
the circular path and (b) the speed of the electron.

3. Consider the mass spectrometer. The magnitude of the electric field
between the plates of the velocity selector is 2.50 x 103 V/m, and the
magnetic field in both the velocity selector and the deflection chamber has
a magnitude of 0.035T. Calculate the radius of the path for a singly charged
ion having a mass m = 2.18 x 10-26 kg.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 19
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Magnetism and Alternating Current

Unit 1: Magnetic Fields

Lecture 3: Magnetic force acting 
a current-carrying conductor
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1.1 Magnetic Fields and Forces.

1.2 Motion of a Charged Particle in a 
Uniform Magnetic Field.

1.3 Applications Involving Charged 
Particles Moving in a Magnetic Field.

1.4 Magnetic Force Acting on a Current-
Carrying Conductor.

1.5 Torque on a Current Loop in a 
Uniform Magnetic Field.

1.6 The Hall Effect.

Unit 1: Magnetic Fields
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A force is exerted on a current-
carrying wire placed in a 
magnetic field.

◦ The current is a collection of 
many charged particles in 
motion.

The direction of the force is 
given by the right-hand rule
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Force on a Wire, the equation
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Consider a straight segment of wire of
length L and cross-sectional area A
carrying a current I in a uniform
magnetic field B.
The magnetic force exerted on a charge
q moving with a drift velocity vd.

To find the total force acting on the

wire, we multiply the force

exerted on one charge by the number

of charges in the segment.



10/21/2014

4

Force on a Wire, the equation, 
continue
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The number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force
on the segment of wire of length L is

the current in the wire is I= nqvdA.  Therefore,

where L is a vector that points in the direction of the current I and
has a magnitude equal to the length L of the segment. This
expression applies only to a straight segment of wire in a uniform
magnetic field.

Force on a Wire, the formula

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 8
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General Equation
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Now consider an arbitrarily shaped
wire segment of uniform cross
section in a magnetic field as shown
in the Figure.

The magnetic force exerted on a
small segment of vector length ds in
the presence of a field B is,

General Equation, continue
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To calculate the total force FB acting
on the wire shown in the Figure, we
integrate Equation over the length of
the wire:

where a and b represent the
endpoints of the wire.



10/21/2014

6

Example 1

The same current-carrying wire is placed in the same
magnetic field B in four different orientations.
Rank the orientations according to the magnitude of the
magnetic force exerted on the wire, largest to smallest.

Example 2

A straight, horizontal length of copper wire is immersed in a
uniform magnetic field. The current through the wire is out of
page. Which magnetic field can possibly suspend this wire to
balance the gravity?

A B C D

See problem 3 in problems to solve by your self..
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Example 3
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A wire bent into a semicircle
of radius R forms a closed
circuit and carries a current I.
The wire lies in the xy plane,
and a uniform magnetic field
is directed along the positive y
axis as in the Figure.
Find (A) the magnitude and
direction of the magnetic
force acting on the straight
portion of the wire and (B) on
the curved portion.

Solution
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The force F1 on the straight
portion of the wire is out of the
page.
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Solution, continue
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The force F2 on the curved
portion is into the page.
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The force on the curved portion is the same in magnitude as the
force on a straight wire between the same two points.

The net magnetic force acting on any closed current loop in a
uniform magnetic field is zero.
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1. A conductor carrying a current I=15.0 A is directed along the positive x axis
and perpendicular to a uniform magnetic field. A magnetic force per unit
length of 0.120 N/m acts on the conductor in the negative y direction.
Determine (a) the magnitude and (b) the direction of the magnetic field in
the region through which the current passes.

2. A wire carries a steady current of 2.40 A. A straight section of the wire is
0.750 m long and lies along the x axis within a uniform magnetic field, B =
1.60k T. If the current is in the positive x direction, what is the magnetic
force on the section of wire?
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3. A straight, horizontal length of copper wire has a

current i=28 A through it. What are the magnitude

and direction of the minimum magnetic field needed

to suspend the wire—that is, to balance the

gravitational force on it? The linear density (mass per

unit length) of the wire is 46.6 g/m.
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The magnetic field

A bar magnet has a magnetic field
around it. This field is 3D in nature and
often represented by lines LEAVING
north and ENTERING south

The magnetic field is a vector that
has both magnitude and direction.

The direction of the magnetic field
at any point in space is the
direction indicated by the north
pole of a small compass needle
placed at that point.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 7

The properties of magnetic field line

1. The lines originate from the north pole and end on the south pole; they 
do not start or stop in mid-space.

2. The magnetic field at any point is tangent to the magnetic field line at 
that point.

3. The strength of the field is proportional to the number of lines per unit 
area that passes through a surface oriented perpendicular to the lines.

4. The magnetic field lines will never come to cross each other.
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Magnetic force on moving 
charge

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 9

Magnetic force on moving
charge

When a charge is placed in a magnetic field, it experiences a 
magnetic force if two conditions are met:
1. The charge must be moving. No magnetic force acts on a 

stationary charge. 
2. The velocity of the moving charge must have a component that 

is perpendicular to the direction of the field. 
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

We can define a magnetic field B at some point in space in terms
of the magnetic force FB the field exerts on a charged particle
moving with a velocity v, which we call the test object.

N

N

S

S

+

v

B
Experiments on various charged
particles moving in a magnetic
field give the following results:

(1) The magnitude FB of the
magnetic force exerted on the
particle is proportional to the
charge q and to the speed v of
the particle.
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

(2) When a charged particle
moves parallel to the magnetic
field vector, the magnetic force
acting on the particle is zero.

(3) When the particle’s velocity
vector makes any angle θ ≠ 0 with
the magnetic field, the magnetic
force acts in a direction
perpendicular to both v and B;
that is, FB is perpendicular to the
plane formed by v and B.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 12
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Properties of the magnetic force on a 
charged particle moving in a magnetic field

(4) The magnetic force exerted
on a positive charge is in the
direction opposite the direction
of the magnetic force exerted
on a negative charge moving in
the same direction.

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 13

Properties of the magnetic force on a charged 
particle moving in a magnetic field

(5) The magnitude of the magnetic force exerted on the
moving particle is proportional to sinθ, where θ is the angle
the particle’s velocity vector makes with the direction of B.

Vector expression for the magnetic force on a charged particle moving 
in a magnetic field

FB = qvBsin 
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Direction of  the magnetic force? 
Right Hand Rule

To determine the DIRECTION of the force on a POSITIVE
charge we use a special technique that helps us understand 
the 3D perpendicular nature of magnetic fields.
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Unit of Magnetic Field
SI unit of magnetic field is the newton per coulomb-meter per 
second, which is called the tesla  (T):

Because a coulomb per second is defined to be an ampere,

A non-SI magnetic-field unit in common use, called the gauss
(G), is related to the tesla through the conversion 1 T = 104 G.

1 T = 1 N
C.m/s

1 T = 1 N
A.m

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 16



10/15/2014

9

Some Approximate Magnetic Field 
Magnitudes

Source of Field Field Magnitude (T)
Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Magnetic Bar 10-2

Surface of the Sun 10-2

Surface of the Earth 0.5 × 10-4

Inside human brain due to nerve impulses 10-13
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Motion of charge particle in
- Electric field 
- Magnetic field 
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Differences between 
Electric and Magnetic 
Forces

1. The electric force vector is along the direction of the electric field, whereas
the magnetic force vector is perpendicular to the magnetic field.

2. The electric force acts on a charged particle regardless of whether the
particle is moving, whereas the magnetic force acts on a charged particle
only when the particle is in motion.

3. The electric force does work in displacing a charged particle, whereas the
magnetic force associated with a steady magnetic field does no work when
a particle is displaced because the force is perpendicular to the
displacement of its point of application.

The kinetic energy of a charged particle moving through a magnetic field
cannot be altered by the magnetic field alone. The field can alter the
direction of the velocity vector, but it cannot change the speed or kinetic
energy of the particle.
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Example 1

An electron in an old-style television
picture tube moves toward the front
of the tube with a speed of 8.0×106

m/s along the x axis. Surrounding the
neck of the tube are coils of wire that
create a magnetic field of magnitude
0.025 T, directed at an angle of 60o to
the x axis and lying in the xy plane.

Calculate the magnetic force on the
electron.
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Solution

Use one of the right-hand rules to
determine the direction of the force on
the electron

= (1.6 × 10-19 C)(8.0 × 106 m/s)(0.025 T)
(sin 60o)

= 2.8 × 10-14 N

FB = qvBsin 
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Example 2
Determine the direction of the unknown variable for a proton moving
in the field using the coordinate axis given

+y

+x+z

B = -x
v = +y
F =+z

B =+Z
v = +x
F =-y

B = -z
v = +y
F =-x
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Example 3

A spatially uniform magnetic field cannot exert a magnetic force 
on a particle in which of the following circumstances? There may 
be more than one correct statement. 
◦ (a) The particle is charged. 
◦ (b) The particle moves perpendicular to the magnetic field. 
◦ (c) The particle moves parallel to the magnetic field. 
◦ (d) The magnitude of the magnetic field changes with time. 
◦ (e) The particle is at rest.
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Example 4
A particle with electric charge is fired into a region of space where the electric 
field is zero. It moves in a straight line. Can you conclude that the magnetic 
field in that region is zero? 

◦ (a) Yes, you can.
◦ (b) No; the field might be perpendicular to the particle’s velocity. 
◦ (c) No; the field might be parallel to the particle’s velocity.
◦ (d) No; the particle might need to have charge of the opposite sign
◦ to have a force exerted on it. 
◦ (e) No; an observation of an object with electric charge gives no information about a 

magnetic field.
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Example 5
Classify each of the following statements as a characteristic (a) of electric 
forces only, (b) of magnetic forces only, (c) of both electric and magnetic 
forces, or (d) of neither electric nor magnetic forces. 

(1) The force is proportional to the magnitude of the field exerting it.
(2) The force is proportional to the magnitude of the charge of the object on which 
the force is exerted. 
(3) The force exerted on a negatively charged object is opposite in direction to the 
force on a positive charge. 
(4) The force exerted on a stationary charged object is nonzero. 
(5) The force exerted on a moving charged object is zero. 
(6) The force exerted on a charged object is proportional to its speed. 
(7) The force exerted on a charged object cannot alter the object’s speed. 
(8) The magnitude of the force depends on the charged object’s direction of motion. 
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Example 6

Determine the initial direction
of the deflection of charged
particles as they enter the
magnetic fields shown in the
Figure

Dr. Hazem F. Sakeek  |  www.physicsacademy.org | www.hazemsakeek.net 26



10/15/2014

14

Example 7
Find the direction of the magnetic field acting on a positively
charged particle moving in the various situations shown in the
Figure if the direction of the magnetic force acting on it is as
indicated.
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Solve by Your self
�Two charged particles are projected in the same direction into a
magnetic field perpendicular to their velocities. If the particles
are deflected in opposite directions, what can you say about
them?

�How can the motion of a moving charged particle be used to
distinguish between a magnetic field and an electric field?

�Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.
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